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Declaration

I hereby declare that the dissertation contains no materials previously written and/or
published by another person, except where appropriate acknowledgment is made in the
form of bibliographical reference, etc.

Budapest, 14 April 2015

—————————————————
Dániel Joó
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Abstract

Toric quiver varieties arise as GIT moduli spaces of quiver representations when the dimen-

sion vector is fixed to have value 1 on every vertex, and come with a canonical embedding

into projective space associated to a quiver polyhedron. We outline a procedure for their

classification and show that up to isomorphism there are only finitely many d-dimensional

toric quiver varieties in each fixed dimension d. We study the homogeneous toric ideals

of projective toric quiver varieties in the canonical embedding associated to the GIT con-

struction. It is shown that these toric ideals are always generated by elements of degree

at most 3. We demonstrate a method of subdividing quiver polytopes into 0-1 polytopes

to obtain an estimate on the minimal degree of the generators in their toric ideals. As an

application of this method it is then shown that up to dimension 4 the toric ideal of every

quiver polytope can be generated in degree 2, with the single exception of the Birkhoff

polytope B3. We then investigate 0-1 polytopes arising from general toric GIT construc-

tions and prove that under certain assumptions on the arrangement of singular points their

toric ideals are generated in degree 2. Finally, departing from the toric case, we prove a

characterization of triples consisting of a quiver, a dimension vector, and a weight vector

that yield smooth GIT moduli spaces in terms of forbidden descendants, which is in the

flavour of characterizing classes of graphs by forbidden minors.

iv



C
E

U
eT

D
C

ol
le

ct
io

n

Table of Contents

Acknowledgments iii

Abstract iv

1 Introduction 2

2 Preliminaries 6

2.1 Toric Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Quiver representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Local structure of quiver moduli spaces . . . . . . . . . . . . . . . . . . . . 14

2.4 Toric quiver varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Classification results 23

3.1 Classification of toric quiver varieties . . . . . . . . . . . . . . . . . . . . . 23

3.2 The 2-dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Affine toric quiver varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Reflexive polytopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Characterizing smooth quiver moduli spaces . . . . . . . . . . . . . . . . . 48

3.5.1 Forbidden descendants . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.2 Generic weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Toric Ideals of Quivers 56

4.1 Presentations of semigroup algebras . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Toric ideals in the affine case . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Toric ideals in the projective case . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 The general case in [46] . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Quiver cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

v



C
E

U
eT

D
C

ol
le

ct
io

n

4.5 Ideals of binary polytopes of toric GIT quotients . . . . . . . . . . . . . . . 77

A List of 3-dimensional reflexive quiver polytopes 85

Bibliography 88

1



C
E

U
eT

D
C

ol
le

ct
io

n

Chapter 1

Introduction

A quiver representation assigns finite dimensional vector spaces to the vertices of a quiver

(a finite directed graph) and linear maps to the arrows that go between the vector spaces

assigned to their endpoints. The dimension vector α of a representation is the map that

assigns to each vertex the dimension of the corresponding vector space. Quiver repre-

sentations with a fixed dimension vector form a vector space which is endowed with the

base change action of the product of general linear groups taken at each vertex, denoted

by GL(α). The orbits of GL(α) correspond bijectively to the isomorphism classes of α

dimensional representations. The affine quotient of this action, which was first studied by

Le Bruyn and Procesi in [33], arises as the spectrum of the algebra of GL(α)-invariant

polynomials, and its points are in bijection with the isomorphism classes of semisimple

representations. This quotient space consists of a single point for quivers without oriented

cycles, however it can yield a complicated structure when there are cycles in the quiver.

More general quotient constructions were introduced by King in [31], where geometric in-

variant theory (GIT) was applied to construct quasiprojective (projective when the quiver

has no oriented cycles) moduli spaces whose points correspond to S-equivalence classes of

representations that are semistable with respect to a fixed character of GL(α).

Most of this thesis studies these moduli spaces in the case when the dimension vector

takes value 1 on every vertex. In this special case the group GL(α) is just just an algebraic

torus (i.e. a product of copies of the multiplicative group of the base field C of complex

numbers) and the resulting moduli spaces are toric varieties, which we will call toric quiver

varieties. These varieties come with a canonical embedding into projective space, which

can be associated to a lattice polyhedron under a standard construction of toric geometry.

2
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We will refer to the polyhedra arising this way as quiver polyhedra.

Toric quiver varieties were studied by Hille [25], [26], [27], Altmann and Hille [2],

Altmann and van Straten [4]. Further motivation is provided by Craw and Smith [13], who

showed that every projective toric variety is the fine moduli space for stable representations

with dimension vector α = (1, . . . , 1) of an appropriate quiver with relations. Toric quiver

varieties also play a role in the study of dimer models (see for ex. [28]). Another application

was introduced recently by Carroll, Chindris and Lin [11].

Following the expository part of the thesis, we will begin our investigation in Chapter

3 by describing a classification procedure for toric quiver varieties. One of the important

consequences we draw from this procedure is that for each positive d there are only finitely

many d-dimensional toric quiver varieties up to isomorphism. The finiteness result itself

also follows from the work of Altmann and Straten [4] and Altmann, Nill, Schwentner and

Wiercinska [3] (although it was not made explicit). However we provide a self-contained

combinatorial derivation and obtain some new results along the way. Theorem 3.13 asserts

that if a toric quiver variety is a product of lower dimensional varieties, then these factors

need to be toric quiver varieties themselves, and that this decomposition can be read off

easily from the combinatorial structure of the quiver. Moreover by Theorem 3.22 any prime

d-dimensional (d > 1) projective toric quiver variety can be obtained from a bipartite quiver

with 5(d−1) vertices and 6(d−1) arrows, whose skeleton (cf. Definition 3.14) is 3-regular.

As an application of the classification procedure we compiled a full list of reflexive quiver

polytopes up to dimension 3. While similar work has been done in [3], we obtained a

different result. The details of our method can be found in Section 3.4.

The toric variety defined by a polyhedron can be covered by principal affine open sets

that correspond to the vertices of the polyhedra. In Theorem 3.28 we show that any toric

quiver variety can be embedded as the union of some of the sets in this particular open

cover of a projective toric quiver variety.

Vanishing ideals of embeddings of affine or projective toric varieties are often referred

to as toric ideals. The study of toric ideals of toric quiver varieties in their canonical

embeddings fits into the line of several recent works which were concerned with various

toric ideals arising from combinatorial constructions. Some examples are toric ideals of

matroids (see for ex. [32]) or edge polytopes of graphs (see for ex. [24]). In the projective

case quiver polytopes coincide with the class of flow polytopes whose toric ideals were the

focus of the work of Lenz [34], while some special cases also appear in [14] and [22]. One

of our key results here is Theorem 4.10 where we prove that the toric ideal of a quiver

3
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polytope is always generated by elements of degree at most 3. This is deduced from a

recent result of Yamaguchi, Ogawa and Takemura from [46], for which we give a simplified

proof. We look further into this topic in Section 4.4 where, applying an idea of Haase and

Paffenholz from [22], we break a quiver polytope into ”cells” by a hyperplane subdivision.

The key feature of this method is that while there are infinitely many quiver polyhedra

(associated to finitely many varieties) in any dimension, there are only finitely many cells

that can occur, hence it is possible to list them by computer exploration. We carried this

task out up to dimension 4 and applied it to prove Theorem 4.21 which asserts that up

to dimension 4 the only quiver polytope whose ideal is not generated in degree 2 is the

Birkhoff polytope B3.

The cells appearing in Section 4.4 are polytopes with 0-1 vertices, which we call binary

polytopes. Toric ideals of binary polytopes have already received some interest, for example

in the work of Ohsugi [37]. In Section 4.5 we turn our attention to binary polytopes arising

from toric GIT moduli space constructions, and show that under suitable restrictions on

the arrangement of singular points their toric ideals can be generated in degree 2, and that

- under even stronger assumptions - they possess a quadratic Gröbner basis. (Theorem

4.24 and Theorem 4.26). While our primary motivation for this work was to study the

quiver polytopes in this class, our results generalized to this wider setting as well. From

a different perspective, one can relate these statements to the Bøgvad Conjecture which

asserts that the toric ideal of a projectively normal embedding of a projective toric variety

can always be generated in degree 2 (see for ex. [9]).

Turning to the affine case in Theorem 4.6 we prove that the vanishing ideal of an

affine toric quiver variety can always be generated by binomials that are the difference of

a monomial of degree 2 and a monomial of degree at most d− 1, where d is the dimension

of the variety (and the bound is sharp).

While the main focus of the thesis remains the toric case we recover some results

that apply to more general dimension vectors. In Proposition 3.27 we generalize a ”toric

phenonemon” to certain special dimension vectors to embed the affine moduli space of

their local quiver settings (see Section 2.3) as an open subset of the moduli space of the

original quiver. This is a refinement of the original result on local quiver settings from [33]

which guaranteed the existence of an étale isomorphism between an open subset of the

moduli space of the original quiver and a neighborhood of the zero representation in the

affine moduli space of the local quiver. Finally in Theorem 3.43 we characterize smooth

quiver moduli in terms of not possessing certain forbidden descendants, which is a result

4
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in the flavour of characterizing classes of graphs with forbidden minors. The key tool for

the proof is a result of Bocklandt [7], which provides an algorithmic method for deciding

whether a given affine quiver moduli space is smooth.

Chapter 2 of the thesis is expository. Sections 3.1, 3.2, 3.3, 4.1 and 4.3 closely follow

[16], which is joint work of M. Domokos and the author of this thesis. Sections 3.5.1 and

4.2 contain some of the theorems of [29] which is work of the author. The rest of the results

in this thesis, to the best of our knowledge, has not appeared elsewhere unless explicitly

stated otherwise.

5
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Chapter 2

Preliminaries

2.1 Toric Varieties

Recall that a toric variety is a normal algebraic variety X containing the torus T = (C∗)d

as a Zariski open subset, together with an algebraic action T ×X → X that extends the

natural action of T on itself. Note that in some of the literature toric varieties are not

required to be normal, however throughout this thesis we work with this assumption. One

of the nicest features of toric varieties is that they can be encoded by a combinatorial

construction. In this section we recall the main components of this construction and refer

to [12] for the details.

Fix a lattice N ∼= Zd and set NR = N ⊗ R. Denote the dual lattice of N by M =

HomZ(N,Z) and similarily set MR = M ⊗ R.

Definition 2.1 A rational polyhedral cone in NR is a set of the form

σ = Cone(S) := {
∑
u∈S

λuu | λu ≥ 0} ⊆ NR,

where S ⊆ NR is finite. The dual cone of σ is

σ∨ = {m ∈MR | ∀u ∈ σ : 〈m,u〉 ≥ 0}.

A rational polyhedral cone is called strongly convex if it does not contain a line through the

origin. Note that for a rational polyhedral cone σ in NR, the dual cone σ∨ is also a rational

polyhedral cone in MR, moreover if σ is strongly convex then σ∨ is full dimensional (i.e. its

6
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affine span is the entire MR). A face of a cone is just its intersection with the boundary of

some closed half-spaces containing the cone. A ray of a cone is a one dimensional face, and

in the case of rational polyhedral cones, the first lattice point along each ray is called a ray

generator. The set σ∨ ∩M is a finitely generated submonoid of M and we will denote by

C[σ∨ ∩M ] the corresponding semigroup algebra. To a strongly convex rational polyhedral

cone σ we associate the affine toric variety

Uσ = Spec(C[σ∨ ∩M ]).

The torus of Uσ is Spec(C[M ]) ∼= (C∗)d, which is embedded via the dual of the map

C[σ∨ ∩ M ] → C[M ]. The lattice M can be identified with the character lattice of the

torus via (m1, . . . ,mk)(t1, . . . , tk) =
∏k

i=1 t
mi
i , and under this idenfication the lattice points

σ∨ ∩M are precisely the characters which extend to coordinate functions of Uσ. On the

other hand the lattice can N can be identified with the one parameter subgroups of T by

assigning to u ∈ N the one parameter subgroup λu(t) = (tu1 , . . . , tuk). Now for a lattice

point u ∈ N we have that u ∈ σ if and only if limt→0λ
u(t) exists in Uσ.

General toric varities can be constructed via fans:

Definition 2.2 A fan Σ in NR is a finite collection of strongly convex rational polyhedral

cones satisfying:

(i) For all σ ∈ Σ, each face of σ is also in Σ.

(ii) The intersection of any two cones in Σ is a face of each.

From a fan Σ in NR one can construct a toric variety XΣ by taking the affine toric

varieties Uσ for each σ ∈ Σ and glueing Uσ1 and Uσ2 via the maps

C[σ∨1 ∩M ] ↪→ C[(σ1 ∩ σ2)∨ ∩M ]←↩ C[σ∨2 ∩M ],

for every σ1, σ2 ∈ Σ.

Next we define embeddings of toric varieties via lattice polyhedra. A polyhedron is

the intersection of finitely many closed half-spaces in Rd, and a polytope is a bounded

polyhedron or equivalently the convex hull of finitely many points. A facet of a polyhedron

is just a face of maximal dimension. A facet presentation of a polyhedron ∇ is given

by choosing inward pointing normal vectors uF for each facet F , and real numbers aF

satisfying

∇ = {x ∈ Rd | 〈x, uF 〉 ≥ −aF for all facets F}.

7
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A polytope in MR is called a lattice polytope if its vertices belong to the lattice M , and

a polyhedron is called a lattice polyhedron if it is the Minkowski sum of a lattice polytope

and a strongly convex rational polyhedral cone. Note that the assumption that the cone is

strongly convex implies that the set of vertices of a lattice polyhedron is always non-empty.

Definition 2.3 The lattice polyhedra ∇i ⊂ M i
R with lattice M i ⊂ M i

R (i = 1, 2) are

integral-affinely equivalent if there exists an affine linear isomorphism

ϕ : AffSpan(∇1)→ AffSpan(∇2) of affine subspaces with the following properties:

(i) ϕ maps AffSpan(∇1) ∩M1 onto AffSpan(∇2) ∩M2;

(ii) ϕ maps ∇1 onto ∇2.

The phrase ‘integral-affinely equivalent’ was chosen in accordance with [10] (though in [10]

full dimensional lattice polytopes are considered).

By the product of two polyhedra ∇1 ⊆ Rd1 and ∇2 ⊆ Rd2 we mean the polyhedron

∇1 ×∇2 := {(x1, x2) ∈ Rd1+d2 | x1 ∈ ∇1, x2 ∈ ∇2}.

Note that the product of lattice polyhedra (resp. strongly convex rational polyhedral

cones) is always a lattice polyhedron (resp. a strongly convex rational polyhedral cone).

A lattice polyhedron ∇ is called normal if for every integer k ≥ 1 the lattice points of k∇
(the Minkowski sum of k copies of ∇) can be written as a sum of k lattice points from ∇.

For every vertex v of a lattice polyhedron ∇ we define the cone σv ⊆ NR to be dual to

the cone generated by (∇∩M − v) ⊆M . Together these cones form a fan in NR, denoted

by Σ∇. Note that whenever the cone τ is a face of the cone σ, the dual cone σ∨ is a face

of τ∨, hence we have an inclusion reversing bijection between the faces of ∇ and the cones

in Σ∇. In particular the rays of Σ∇ are in bijective correspondence with the facets of ∇,

and a facet prensentation of ∇ can be given by choosing the uF to be the ray generators in

Σ∇. When we speak of the facet presentation of a lattice polyhedron, we will always mean

this unique presentation. To simplify the notation we shall write Uv for the affine variety

Uσv and note that these varieties give a principal affine cover of the toric variety XΣ∇ .

To generalize this take a lattice point m ∈ ∇ ∩M , and let Vm denote the set of vertices

on the minimal face of ∇ containing m. We define the affine open subset Um ⊆ XΣ∇ , as

Um =
⋂
v∈Vm Uv. By construction Um is the affine toric variety of the cone

⋂
v∈Vm σv.

8
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When ∇ is full dimensional in MR we will define the toric variety associated to ∇ to

be XΣ∇ and denote it by X∇. When ∇ is not full dimensional this construction would

yield a fan that contains both ρ and −ρ for some ray ρ and hence the resulting toric

variety would have torus factors. Throughout this thesis we will only work with toric

varieties that contain no torus factors, hence it is more convenient for us to eliminate this

possibilty by defining X∇ to be the variety we obtain from the above construction when we

restrict the lattice to the affine span of ∇. To make this more precise pick a lattice point

m ∈ AffSpan(∇)∩M , and let Σ∗∇ be the fan associated to ∇ when considered in the lattice

(AffSpan(∇)∩M −m) ⊆ (AffSpan(∇)−m). We then define X∇ to be XΣ∗∇
and note that

it does not depend on the choice of m. We note that this convention is not consistent with

[12], but it simplifies the description of toric moduli spaces of quivers which are the central

objects of this thesis.

By the product of two fans Σ1 and Σ2 we mean the fan

Σ1 × Σ2 = {σ1 × σ2 | σ1 ∈ Σ1, σ2 ∈ Σ2}.

It can be easily derived from the definitions that XΣ1×Σ2
∼= XΣ1 ×XΣ2 and that Σ∇1×∇2 =

Σ∇1 × Σ∇2 .

The toric variety X∇ is quasi-projective, moreover it is projective if ∇ is a polytope.

To realize the variety X∇ more explicitly let uF and aF be the inward pointing normal

vectors and constants in its facet presentation and define the cone C(∇) ⊆MR × R as

C(P ) = {(m,λ) ∈MR × R | 〈m,uF 〉 ≥ −λaF for all F, λ ≥ 0}.

Let S∇ be the graded semigroup C(P ) ∩M × Z with the grading defined by setting the

grade of (m,λ) to be λ, and C[S∇] be the corresponding graded semigroup algebra. The

projective spectrum Proj(C[S∇]) is isomorphic to the variety X∇ (see Theorem 7.1.13 in

[12]). We note that it follows from the Proj construction that the open set Um ⊆ XΣ∇ is

the affine spectrum of the homogeneous localization C[S∇](t(m,1)), where t(m,1) denotes the

element of C[S∇] corresponding to (m, 1) ∈ S∇.

An affine toric variety Uσ is smooth if and only if the ray generators of σ form a Z-

basis of the lattice N (in fact the only smooth affine toric varieties are the affine spaces).

When σ is full dimensional in NR this is equivalent to saying that the ray generators of

the dual cone σ∨ are a Z-basis of the character lattice M . It follows that for a polytope

∇ and a vertex v ∈ ∇ the principal affine open set Uv is smooth if the ray generators of

9
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Cone(∇ ∩M − v) are a Z-basis of the lattice (AffSpan(∇) ∩M − v), and the variety X∇

is smooth if Uv is smooth for every vertex v. We will say that v is a smooth vertex if Uv is

smooth, and that ∇ is a smooth polyhedron when X∇ is smooth. Vertices (resp. polyhedra)

that are not smooth will be called singular.

Note that S(∇) and consequently C[S∇] are generated by their elements of degree 0

and 1 when ∇ is normal. In particular when ∇ is a normal polytope, with lattice points

(m1, . . . ,mk) the abstract variety X∇ can be identified with the Zariski-closure of the image

of the map

(C∗)d → Pk−1, t 7→ (tm1 : · · · : tmk) (2.1)

where for t in the torus (C∗)d and m ∈ M we write tm :=
∏d

i=1 t(i)
m(i). From now on

for a normal polytope ∇, X∇ will stand for this particular embedding in projective space

of our variety. Normality of ∇ implies that X∇ is projectively normal, that is, its affine

cone in Cd is normal. We point out that in general the closure of the image of the map in

(2.1) is isomorphic to X∇ whenever ∇ is a so-called very ample polytope, however since

the polytopes occuring in our work are normal by construction, we decided to omit the

discussion of this case.

The homogeneous vanishing ideal of the embedding given in (2.1) can be realized as

follows: Let us denote the element of C[S(∇)] corresponding to (m,λ) ∈ S(∇) by tmzλ.

Consider the morphism of graded rings: ϕ : C[x1, . . . , xd] � C[S(∇)] defined by ϕ(xi) =

tmiz. The homogeneous ideal ker(ϕ) is called the toric ideal of the polytope ∇. It is well

known that ker(ϕ) is generated by binomials (see for ex. Lemma 4.1 in [44]).

Similarily in the affine case if (m1, . . . ,mk) is a set of generators for the semigroup

σ∨ ∩M we can identify the affine variety Uσ with the Zariski-closure of the image of the

map

(C∗)d → Ck, t 7→ (tm1 , . . . , tmk).

Now one has a morphism of algebras ϕ : C[x1, . . . , xd] � C[σ∨∩M ] defined by ϕ(xi) = tmi

and ker(ϕ) is called the toric ideal of σ∨ ∩ M (corresponding to the set of generators

chosen).

It is easy to see that if ∇1 and ∇2 are integral-affinely equivalent lattice polyhedra then

the graded rings C[S∇1 ] and C[S∇2 ], and hence the varieties X∇1 and X∇2 , are isomorphic.

Moreover if ∇1 and ∇2 are integral-affinely equivalent normal lattice polytopes then they

can be identified via their embeddings into projective space given in the previous paragraph.

10
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2.2 Quiver representations

A quiver is a finite directed graph Q with vertex set Q0 and arrow set Q1. Multiple

arrows, oriented cycles, loops are all allowed. For an arrow a ∈ Q1 denote by a− its

starting vertex and by a+ its terminating vertex. By the valency of a vertex v ∈ Q0

we mean |{a ∈ Q1 | a− = v}| + |{a ∈ Q1 | a+ = v}|. The in-degree of a vertex v is

|{a ∈ Q1 | a+ = v}| and the out-degree is |{a ∈ Q1 | a− = v}|. By a primitive cycle

in a quiver, we will mean a minimal oriented cycle, and by an (primitive) undirected cycle

we will mean a set of arrows of the quiver that form a (minimal) cycle in the underlying

undirected graph of the quiver. By a forest in a quiver we mean a set of arrows not

containing undirected cycles, and a tree is just a connected forest. By a spanning forest we

mean a maximal forest, i.e. one that is a maximal tree for each connected component of

the quiver. For an undirected graph Γ we set χ(Γ) := |Γ1|−|Γ0|+χ0(Γ), where Γ0 is the set

of vertices, Γ1 is the set of edges in Γ, and χ0(Γ) is the number of connected components

of Γ. Define χ(Q) := χ(Γ) and χ0(Q) := χ0(Γ) where Γ is the underlying graph of Q, and

we say that Q is connected if Γ is connected, i.e. if χ0(Q) = 1. The Ringel form of the

quiver is the bilinear form on RQ0 defined as

〈α, β〉Q =
∑
v∈Q0

α(v)β(v)−
∑
a∈Q1

α(a−)β(a+).

A representation R of Q is given by assigning a vector space R(v) to each v ∈ Q0,

and a linear map R(a) : R(a−) → R(a+) for each a ∈ Q1. Throughout this thesis we

will only consider representations over the complex number field C. A morphism between

representations R and R′ consists of a collection of linear maps L(v) : R(v) 7→ R′(v)

satisfying R′(a)◦L(a−) = L(a+)◦R(a) for all a ∈ Q1. Accordingly the representation R′ is

a subrepresentation of R if R′v is a subspace of Rv for each v ∈ Q0 and the linear maps R′a

are restrictions of the maps Ra. A representation R is called simple if it has no non-zero

proper subrepresentations, and semisimple if it is a direct sum of simples. The dimension

vector α : Q0 → N of a representation R is given by α(v) = dim(Xv). The pair (Q,α) is

called a quiver setting. We say that a representation or a quiver setting is genuine when

its dimension vector is positive on every vertex. For a fixed dimension vector α ∈ NQ0 ,

Rep(Q,α) :=
⊕
a∈Q1

homC(Cα(a−),Cα(a+))

11
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is the space of α-dimensional representations of Q. The product of general linear groups

GL(α) :=
∏

v∈Q0
GLα(v)(C) acts linearly on Rep(Q,α) via

g ·R := (g(a+)R(a)g(a−)−1 | a ∈ Q1) (g ∈ GL(α), R ∈ Rep(Q,α)).

The GL(α)-orbits in Rep(Q,α) are in a natural bijection with the isomorphism classes of

α-dimensional representations of Q.

In [31] geometric invariant theory (GIT) was applied to constuct moduli spaces parametriz-

ing isomorphism classes of quiver representations with a fixed dimension vector. In a some-

what more general setting of GIT, one has a reductive group G acting on an affine variety

X, and a fixed character χ : G→ C∗. An element f of the coordinate ring O(X) is called

a relative invariant of weight χ if for every g ∈ G we have f(g ·x) = χ(g)f(x). The relative

invariants of weight χ constitute a subspace of the coordinate ring denoted by O(X)χ.

Note that when χ is the trivial character O(X)χ is the ring of G invariant polynomials,

which we will denote by O(X)G. Moreover
⊕∞

n=0O(X)χn can be turned into a graded ring

by setting O(X)χk to be its degree k part. A point x ∈ X is called χ-semistable if there is

an f ∈ O(X)χn for n ≥ 1 such that f(x) 6= 0 and it is called χ-stable if it is χ-semistable,

the orbit G · x is closed in the open subset of semistable points and the stabilizer of x in

G is finite. The set of semistable points is denoted by Xχ−ss and the set of stable points

is denoted by Xχ−s. The GIT quotient

X //χ G = Proj(
∞⊕
n=0

O(X)χn)

is a good categorical quotient for the set Xχ−ss under the action of G, moreover it has an

(possibly empty) open subset that is a geometric quotient for Xχ−s (see [36] for details

of this construction and an explanation of some of the terminology used here). Note that

the embedding O(X)G ↪→ Proj(
⊕∞

n=0O(X)χn induces a surjective projective morphism

X //χG� Spec(O(X)G)), in particular when O(X)G = C the variety X //χG is projective.

Returning to our setting of GL(α) acting on Rep(Q,α) first note that the characters

of GL(α) can be given by functions θ : Q0 → Z, by defining the character χθ as χθ(g) =∏
v∈Q0

det(g(v))θ(v). To simplify the notation, we will write θ instead of χθ when talking

about relative invariants, semistable or stable points in this setting. In particular a relative
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invariant of weight θ is a polynomial function f ∈ O(Rep(Q,α)) satisfying

f(g ·R) = (
∏
v∈Q0

det(g(v))θ(v))f(R),

for all g ∈ GL(α) and R ∈ Rep(Q,α). We point the reader to [17] for an explicit method

of constructing relative invariant polynomials in this setting. Note that GL(α) always

contains the one dimensional algebraic torus, whose elements gc are given by gc(v) =

c · Id(R(v)) for c ∈ C∗, which acts trivially on Rep(Q,α). We modify our notion of stability

accordingly and instead of the stabilizer being finite we require that dim(GL(α) · R) =

dim(GL(α))− 1 for a θ-stable representation R. We point out that from this definition it

follows that for a θ-stable representation R with dimension vector α the set of vertices {v ∈
Q0 | α(v) 6= 0} is connected in Q, otherwise R would be stabilized by a higher dimensional

subtorus of GL(α). Next we recall from Proposition 3.1 from [31] the description of the

semistable and stable points of Rep(Q,α).

Proposition 2.4 For a quiver Q, a dimension vector α, an integer weight θ : Q0 → Z
and a representation R ∈ Rep(Q,α) we have,

(i) R is θ-semistable if and only if
∑

v∈Q0
α(v)θ(v) = 0 and for all subrepresentations R′

of R, we have
∑

v∈Q0
α′(v)θ(v) ≥ 0, where α′ is the dimension vector of R′.

(i) R is θ-stable if and only if
∑

v∈Q0
α(v)θ(v) = 0 and for all non-zero proper subrepre-

sentations R′ of R, we have
∑

v∈Q0
α′(v)θ(v) > 0, where α′ is the dimension vector

of R′. In particular the θ-stable representations are the simple objects in the category

of θ-semistable representations of Q.

The GIT-quotient Rep(Q,α)//θGL(α), which we will denote byM(Q,α, θ), is a coarse

moduli space for families of θ-semistable α-dimensional representations of Q up to S-

equivalence (cf. [36] for the terminology and Theorem 4.1 of [31] for the proof of the

statement). When a θ stable representation exists, we will say that the quiver setting

(Q,α) is θ-stable. Note that in this case

dim(M(Q,α, θ)) = 1− 〈α, α〉Q =
∑
a∈Q1

α(a−)α(a+)−
∑
v∈Q0

α2(v) + 1.

A notable special case is that of the zero weight. Then the moduli spaceM(Q,α, 0) is

the affine variety whose coordinate ring is the subalgebra ofGL(α)-invariants inO(Rep(Q,α)).

13
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This was studied in [33] before the introduction of the case of general weights in [31]. Its

points are in a natural bijection with the isomorphism classes of semisimple representations

of Q with dimension vector α. For a quiver with no oriented cycles, M(Q,α, 0) is just a

point, and consequently M(Q,α, θ) is a projective variety.

2.3 Local structure of quiver moduli spaces

In Section 3.5.1 we will be concerned with local properties ofM(Q,α, θ). For this purpose

we will recall some results that provide information on the local structure of M(Q,α, θ)

in terms of a (typically smaller) quiver. The first method described here was developed by

Le Bruyn and Procesi for the affine case in [33], and then extended to the general case by

Adriaenssens and Le Bruyn in [1].

Throughout this section we will denote by εv the dimension vector with εv(v) = 1 and

εv(u) = 0 for v 6= u. We begin by recalling from Proposition 3.2 from [31] that for a point

ξ ∈ M(Q,α, θ) there is a unique orbit GL(α) · R ⊆ π−1(ξ), such that the representations

in GL(α) ·R decompose as a direct sum of θ-stable representations (π denotes the quotient

map Rep(Q,α)θ−ss → M(Q,α, θ)). Let us write R = Rn1
1 ⊕ · · · ⊕ R

nk
k , where the Ri are

distinct θ-stable representations. Denote by βi the dimension vector of Ri and note that

the pairs (ni, βi) only depend on the choice of ξ and not on the choice of R.

We construct a new quiver setting (Qξ, αξ) as follows: Qξ has vertices v1, . . . , vk cor-

responding to the θ-stable summands in the decomposition of R, the dimension vector is

defined as αξ(vi) = ni and the number of arrows from vi to vj is equal δij−〈βi, βj〉Q, where

〈, 〉Q is the Ringel-form defined in Section 2.2. We recall Theorem 4.1 from [1]:

Theorem 2.5 There is an étale isomorphism between an affine neighborhood of ξ in the

moduli space M(Q,α, θ) and an affine neighborhood of the image of the 0 representation

in M(Qξ, αξ, 0).

Theorem 2.5 was proven in the special case θ = 0 in [33]. Observe that in this case

every representation is 0-semistable and the 0-stable representations coincide with the

simple representations. Making this result effective a characterization of the quiver settings

(Q,α) for which Q possesses a simple representation with dimension vector α was given in

Theorem 4 of [33], which we recall below:

Theorem 2.6 Let (Q,α) be a genuine quiver setting. There exists a simple representation

with dimension vector α if and only if:

14
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(i) Q is a single vertex with no loops, or a single vertex with a single loop, or a directed

cycle of length k for k ≥ 2, and α is 1 on every vertex.

(ii) Q is none of the quivers in (i) but is strongly connected and for all v ∈ Q0 we have

〈α, εv〉Q ≤ 0 and 〈εv, α〉Q ≤ 0.

Moreover in each case except for the one vertex quiver with no loops there are infinitely

many isomorphism classes of simples with dimension vector α.

We note that a similar characterization for triples (Q,α, θ) for which Q possesses an

α-dimensional θ-stable representation was also given in Theorem 5.1 of [1] . We opted to

recall Theorem 2.6 here, since it is the one we need for the proof of Theorem 3.43. We

also point out that in [18] it was shown that Theorem 2.6 holds for representations over

an algebrically closed field of arbitrary characteristic, moreover the local quiver technique

of Theorem 2.5 was also extended to this more general setting.

Remark 2.7 One of the nice features of Theorem 2.5 is that étale morphisms preserve

several important properties of M(Q,α, θ). In particular M(Q,α, θ) is smooth at the

point ξ if and only ifM(Qξ, αξ, 0) is smooth at 0, which in turn implies thatM(Qξ, αξ, 0)

is an affine space (cf. Theorem 2.1 in [7]). Moreover M(Q,α, θ) is locally a complete

intersection at ξ if and only if M(Qξ, αξ, 0) is locally a complete intersection at 0, which

in this case implies that M(Qξ, αξ, 0) is globally a complete intersection (see [21]).

An important consequence of Theorem 2.5 is that to understand the local structure of

quiver varieties we only need to study the case θ = 0. We will now recall a method from [7]

which characterizes the quiver settings (Q,α) for which M(Q,α, 0) is smooth via certain

reduction steps.

Lemma 2.8 (RI) Let (Q,α) be a quiver setting and v a vertex without loops. Assume

that at least one of 〈α, εv〉Q ≥ 0 and 〈εv, α〉Q ≥ 0 holds. Let a1, . . . , ak denote the arrows

pointing to v and b1, . . . , bl denote the arrows leaving from v (k, l ≥ 1). Let Q′ be the quiver

we obtain by removing v from Q and the arrows incident to it, and for each pair (i, j) with

i ∈ {1, . . . , k} and j ∈ {1, . . . , l} adding a new arrow cij with c−ij = a−i and c+
ij = b+

j . Set α′

to be the restriction of α to the vertices of Q′. Now we have M(Q,α, 0) =M(Q′, α′, 0).

Lemma 2.9 (RII) Let (Q,α) be a quiver setting, v a vertex with α(v) = 1 and b a loop

incident to v. Let Q′ be the quiver we obtain from Q by removing b. Now we have

15



C
E

U
eT

D
C

ol
le

ct
io

n

M(Q,α, 0) =M(Q′, α′, 0)× C.

Lemma 2.10 (RIII) Let (Q,α) be a quiver setting, v a vertex with α(v) > 1 and let b

be the only loop in Q incident to v. Further assume that (other than b) there is only one

arrow leaving from v which points to a vertex w with α(w) = 1 (resp. there is only one

arrow pointing to v which leaves from a vertex w with α(w) = 1). Let Q′ be the quiver we

obtain from Q by removing the loop b and adding α(v)− 1 new arrows from v to w (resp.

from w to v). Now we have M(Q,α, 0) =M(Q′, α′, 0)× Ck.

We will refer to the reduction steps in Lemmas 2.8, 2.9 and 2.10 as RI, RII and RIII.

Note that all of these reduction steps preserve the properties of being smooth or a complete

intersection. The main result of [7] is the following theorem:

Theorem 2.11 If (Q,α) is a strongly connected quiver setting with α(v) > 0 for each

v ∈ Q0 on which the reduction steps RI, RII and RIII can not be applied, then Q is

either a single vertex with no loops, a single vertex with one loop, or a single vertex v with

α(v) = 2 and two loops.

2.4 Toric quiver varieties

Most of this thesis deals with the special case when α(v) = 1 for all v ∈ Q0. In this case we

will simply write Rep(Q) for Rep(Q,α) andM(Q, θ) forM(Q,α, θ). The coordinate ring

O(Rep(Q)) is the polynomial ring C[ta | a ∈ Q1], where ta is the function Rep(Q) → C
defined by R → R(a). The group GL((1, . . . , 1)) is just the algebraic torus (C∗)Q0 . Note

that it follows immediately from Theorem 14.2.13 in [12] thatM(Q, θ) is a quasi-projective

toric variety. Moreover when Q is θ-stable we have that dim(M(Q, θ)) = χ(Q). We will

refer to the toric varieties arising as M(Q, θ) as toric quiver varieties.

For m ∈ NQ1 we will denote by tm the monomial
∏

a∈Q1
t
m(a)
a ∈ O(Rep(Q)). It is easy

to check that the space of relative invariants O(Rep(Q))θ is spanned by monomials tm such

that θ(v) =
∑

a+=vm(a) −
∑

a−=vm(a) for all v ∈ Q1. We define the quiver polyhedron

∇(Q, θ) as

∇(Q, θ) = {x ∈ RQ1 | 0 ≤ x, ∀v ∈ Q0 : θ(v) =
∑
a+=v

x(a)−
∑
a−=v

x(a)}.
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A special case which we will study in Section 3.4 is that of the canonical weight δQ :=∑
a∈Q1

(εa+ − εa−) (here εv stands for the characteristic function of v ∈ Q0). Note that

∇(Q, δQ) always contains (1, . . . , 1) as an interior point.

Denote by F : RQ1 → RQ0 the map given by

F(x)(v) =
∑
a+=v

x(a)−
∑
a−=v

x(a) (v ∈ Q0). (2.2)

By definition we have ∇(Q, θ) = F−1(θ) ∩ RQ1

≥0. Set MQ
R = F−1(0) and MQ = MQ

R ∩ ZQ1 .

Next let F be a spanning forest of Q and note |F | = |Q0|−χ0(Q). For an arrow a ∈ Q1 \F
let caF denote the unique undirected primitive cycle in F ∪{a} and set eaF ∈ ZQ1 to be 1 on

the arrows of caF that are oriented the same way as a along caF , −1 on the arrows of caF that

are oriented reversely and 0 on the rest of the arrows. One can check without difficulty

that eaF is the unique element in MQ that takes value 1 on a and 0 on Q1 \ (F ∪ {a}), and

hence derive the following (well-known) result:

Proposition 2.12 For any spanning forest F of Q, the set {eaF | a ∈ Q1 \F} is a Z-basis

of MQ. In particular dim(MQ
R ) = χ(Q) and hence dim(∇(Q, θ)) ≤ χ(Q).

Set S(Q, θ) =
⊕∞

n=0∇(Q, nθ) ∩ ZQ1 to be the graded semigroup with degree k part

∇(Q, kθ) ∩ ZQ1 and C[S(Q, θ)] the corresponding graded semigroup algebra. It follows

thatM(Q, θ) ∼= Proj(C[S(Q, θ)]). To relate this to the construction of toric varieties from

polyhedra, we will need to show that ∇(Q, θ) is a lattice polyhedron. By the support of

x ∈ RQ1 , denoted by supp(x), we mean the set {a ∈ Q1 | x(a) 6= 0} ⊆ Q1.

Proposition 2.13 (i) Denote by Q1, . . . , Qt the maximal subquivers of Q that contain no

oriented cycles. Then ∇(Q, θ) ∩ ZQ1 has a Minkowski sum decomposition

∇(Q, θ) ∩ ZQ1 = ∇(Q, 0) ∩ ZQ1 +
t⋃
i=1

∇(Qi, θ) ∩ ZQ1 . (2.3)

(ii) Let C1, . . . , Cr be the primitive cycles of Q and let εC1 , . . . , εCr denote their character-

istic functions. Then

∇(Q, 0) = {
r∑
i=1

λiεCi
| λi ≥ 0},

and hence ∇(Q, 0) is a strongly convex rational polyhedral cone.

(iii) The quiver polyhedron ∇(Q, θ) is a normal lattice polyhedron.
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Proof. (i) It is obvious that ∇(Q, θ) ∩ ZQ1 contains the set on the right hand side of

(2.3). To show the reverse inclusion take an x ∈ ∇(Q, θ) ∩ ZQ1 . If its support contains

no oriented cycles, then x ∈ ∇(Qi, θ) for some i. Otherwise take a minimal oriented cycle

C ⊆ Q1 in the support of x. Denote by εC ∈ RQ1 the characteristic function of C, and

denote by λ the minimal coordinate of x along the cycle C. Then λεC ∈ ∇(Q, 0) and

y := x− λεC ∈ ∇(Q, θ). Moreover, y has strictly smaller support than x. By induction on

the size of the support we are done.

(ii) If x ∈ ∇(Q, 0) then whenever supp(x) contains an in-arrow of a vertex it also has

to contain an out-arrow and hence supp(x) contains an oriented cycle. Now the statement

follows by the same induction as in (i).

(iii) The same argument as in (i) and taking into account the convexity of ∇(Q, θ)

yields

∇(Q, θ) = ∇(Q, 0) + Conv(
t⋃
i=1

∇(Qi, θ)).

The vertices of ∇(Qi, θ) belong to ZQ1 by Theorem 13.11 in [41]. The set of vertices

of Conv(
⋃t
i=1∇(Qi, θ)) is a subset of the union of the vertices of the ∇(Qi, θ), so it is

a lattice polytope. Taking (ii) into account we see that ∇(Q, θ) is the Minkowski sum

of a lattice polytope and a strongly convex rational polyhedral cone and hence it is a

lattice polyhedron. For normality we need to show that for all positive integers k we have

∇(Q, kθ)∩ZQ1 = k(∇(Q, θ)∩ZQ1). The polytopes ∇(Qi, θ) are normal by Theorem 13.14

in [41]. So by (i) we have ∇(Q, kθ) ∩ ZQ1 = ∇(Q, 0) ∩ ZQ1 +
⋃t
i=1(∇(Qi, kθ) ∩ ZQ1) =

∇(Q, 0) ∩ ZQ1 +
⋃t
i=1 k(∇(Qi, θ) ∩ ZQ1) ⊆ k(∇(Q, 0) ∩ ZQ1 +

⋃t
i=1∇(Qi, θ) ∩ ZQ1). �

Corollary 2.14 (i) We have the isomorphism M(Q, θ) ∼= X∇(Q,θ) of toric varieties.

(ii) For every vertex m ∈ ∇(Q, θ) the arrow set supp(m) is a forest.

(iii) A principal affine open cover of M(Q, θ) is given by the Zariski-open sets {Uv |
v is a vertex of ∇(Q, θ)}, where σv is the cone

σv = Cone(∇(Q, θ)− v) = F−1(0) ∩ {x ∈ RQ1 | ∀a ∈ Q1 \ supp(v) : x(a) ≥ 0},

and Uv = Spec(C[σv ∩ ZQ1 ]).

Proof. For (i) we know from Proposition 2.13 that ∇(Q, θ) is a normal lattice polyhedron

and by construction both M(Q, θ) and X∇(Q,θ) are isomorphic to Proj(C[S(Q, θ)]). For

(ii) assume that c ⊆ supp(m) is an undirected cycle, and let a ∈ Q1 be an arrow in c.
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Now one can choose a spanning forest F that contains c \ {a} and see that for the vector

eaF ∈ MQ from Proposition 2.12 we have supp(eaF ) = c. Since eaF takes values 1,−1 on

every arrow of c we have that m + eaF ∈ ∇(Q, θ) and m− eaF ∈ ∇(Q, θ) and hence m can

not be a vertex. Finally (iii) follows from the description of the toric fan of the variety

X∇(Q,θ) given in Section 2.1. �

Let C1, . . . , Cr be the primitive cycles in Q. Applying the same induction as in the

proof of Proposition 2.13 one can deduce that εC1 , . . . , εCr constitute a generating set for

the monoid ∇(Q, 0) ∩ ZQ1 . Enumerate the elements in {m, εCj
+m | m ∈

⋃t
i=1∇(Qi, θ) ∩

ZQ1 , j = 1, . . . , r} as m0,m1, . . . ,mk. For a lattice point m ∈ ∇(Q, θ) ∩ ZQ1 denote by

xm : Rep(Q)→ C the function x 7→
∏

a∈Q1
R(a)m(a). Consider the map

ρ : Rep(Q)θ−ss → Pk, x 7→ (xm0 : · · · : xmk). (2.4)

Proposition 2.15 M(Q, θ) can be identified with the locally closed subset Im(ρ) in Pd.

Proof. The morphism ρ is (C×)Q0-invariant, hence it factors through the quotient morphism

Rep(Q,α)θ−ss → M(Q,α, θ), so there exists a morphism µ : M(Q, θ) → Im(ρ) with

µ ◦ π = ρ. One can deduce from Proposition 2.13 by the Proj construction of M(Q, θ)

that µ is an isomorphism. �

Next we recall some of the results in [4] and [26] that give us a combinatorial description

of the fan of the toric variety M(Q, θ). For a set of vertices V ⊆ Q0 we will write

θ(V ) =
∑

v∈V θ(v). For a representation R ∈ Rep(Q) we will denote by supp(R) the set

{a ∈ Q0 | R(a) 6= 0}. Clearly for any tm ∈ O(Rep(Q)) we have tm(R) 6= 0 if and

only if supp(m) ⊆ supp(R). Note that a subrepresentation of R is given by choosing a

set of vertices V ⊆ Q0 such that no arrow in supp(R) leaves V . Taking these facts and

Proposition 2.4 into account one can derive Proposition 2.16 and Proposition 2.17. For

A ⊆ Q1 we will call a set H ⊆ Q0 A-successor closed if there is no a ∈ A with a− ∈ H and

a+ ∈ Q0 \H, we will call a Q1-successor closed set simply successor closed.

Proposition 2.16 The following are equivalent:

(i) R is θ-semistable.

(ii) θ(Q0) = 0 and for any supp(R)-successor closed vertex set V we have θ(V ) ≥ 0.

Proposition 2.17 The following are equivalent:

19



C
E

U
eT

D
C

ol
le

ct
io

n

(i) R is θ-stable.

(ii) θ(Q0) = 0 and for any supp(R)-successor closed, nonempty, proper subset of vertices

V ⊂ Q0, we have θ(V ) > 0.

An important consequence of Propositions 2.16 and 2.17 is that the property of being

θ-semistable or θ-stable only depends on supp(R) and θ. Note that it also follows that

whenever supp(R) ⊆ supp(R′), the semistability (resp. stability) of R implies the semista-

bility (resp. stability) of R′. In particular Q is θ-stable if and only if the representations

R with supp(R) = Q1 are θ-stable.

Following [4] we call a representation R θ-polystable if the connected components of

the quiver with vertex set Q0 and arrow set supp(R) are θ-stable. We call a set of arrows

A ⊆ Q1 polystable (resp. stable) if there is a polystable (resp. stable) representation

R with supp(R) = A. For easier formulation of the upcoming propostions we fix the

convention that a quiver without arrows is θ-stable if and only if θ = 0, note that this

implies that the zero representation (or equivalently the empty arrow set) is θ-polystable

if and only if θ = 0. With this convention in mind we allow the forests in Corollary 2.19

to be empty. We recall (4) from Lemma 7 in [4]:

Proposition 2.18 The following are equivalent:

(i) R is θ-polystable.

(ii) There exists an x ∈ ∇(Q, θ) such that supp(x) = supp(R).

Corollary 2.19 (i) The map that assigns to a set of arrows A ⊆ Q1 the set {x ∈ ∇(Q, θ) |
∀a ∈ Q1 \ A : x(a) = 0} establishes an inclusion preserving bijection between the set

{supp(R) | R is θ-polystable} and the faces of ∇(Q, θ).

(ii) The cones in the fan of the toric varietyM(Q, θ) are in inclusion reversing bijection

with the set {supp(R) | R is θ-polystable} . The cones of maximal dimension correspond

to the θ-polystable undirected forests.

Part (i) of Corollary 2.19 is the same as Corollary 8 from [4]. Part (ii) was proven in [26]

for the special case when θ is a generic weight, meaning that the θ-stable and θ-semistable

representations coincide. Since stability of a representations implies polystability, which

in turn implies semistability, if we assume that θ is generic one can replace the term

”polystable” by ”stable” in both Proposition 2.18 and Corollary 2.19.
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Remark 2.20 Let us now assume that the arrow sets Q1 \ {a} are supports of stable

representations for every a ∈ Q1 (we will see in Section 3.1 that essentially this is the only

interesting case). Recall that in this case dim(M(Q, θ)) = χ(Q). Fix an arbitrary lattice

point v0 ∈ AffSpan(∇(Q, θ)) ∩ ZQ1 . Now the polytope ∇(Q, θ)− v0 is full dimensional in

the lattice MQ, moreover by Corollary 2.19 its maximal faces correspond bijectively to the

arrows of Q. Set ua to be the element in the dual lattice of MQ, which is the image of

the coordinate function corresponding to the arrow a. It follows that the (unique) facet

representation of ∇(Q, θ)− v0 is:

{x ∈MQ
R | ∀a ∈ Q1 : 〈x, ua〉 ≥ −v0(a)}.

We will denote the dual lattice of MQ by NQ. One can check without difficulty that

the subgroup {n ∈ ZQ1 | ∀m ∈ MQ : 〈m,n〉 = 0} is generated by the elements∑
a+=v εa −

∑
a−=v εa. Hence we have

NQ = ZQ1/〈
∑
a+=v

εa −
∑
a−=v

εa | v ∈ Q0〉.

We shall conclude this section by noting that some of the results (for example those

from [34]) we refer to in this thesis are formulated for flow polytopes. Flow polytopes are

defined as follows: Given an integral vector θ ∈ ZQ0 and non-negative integral vectors

l,u ∈ NQ1

0 the polytope

∇ = ∇(Q, θ, l,u) = {x ∈ RQ1 | l ≤ x ≤ u, ∀v ∈ Q0 : θ(v) =
∑
a+=v

x(a)−
∑
a−=v

x(a)},

is called a flow polytope. As we shall point out in Proposition 2.21 below, up to integral-

affine equivalence, the class of flow polytopes coincides with the class of quiver polytopes,

so the class of quiver polyhedra is the most general among the above classes.

Proposition 2.21 For any flow polytope ∇(Q, θ, l,u) there exists a quiver Q′ with no

oriented cycles and a weight θ′ ∈ ZQ′1 such that the polytopes ∇(Q, θ, l,u) and ∇(Q′, θ′)

are integral-affinely equivalent.

Proof. Note that x ∈ RQ1 belongs to∇(Q, θ, l,u) if and only if x−l belongs to∇(Q, θ′,0,u−
l) where θ′ is the weight given by θ′(v) = θ(v) −

∑
a+=v l(a) +

∑
a−=v l(a). Conse-

quently X∇(Q,θ,l,u) = X∇(Q,θ′,0,u−l). Therefore it is sufficient to deal with the flow poly-

topes ∇(Q, θ,0,u). Define a new quiver Q′ as follows: add to the vertex set of Q two
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new vertices va, wa for each a ∈ Q1, and replace the arrow a ∈ Q1 by three arrows

a1, a2, a3, where a1 goes from a− to va, a2 goes from wa to va, and a3 goes from wa

to a+. Let θ′ ∈ ZQ′0 be the weight with θ′(va) = u(a) = −θ′(wa) for all a ∈ Q1 and

θ′(v) = θ(v) for all v ∈ Q0. Consider the linear map ϕ : RQ1 → RQ′1 , x 7→ y, where

y(a1) := x(a), y(a3) := x(a), and y(a2) = u(a) − x(a) for all a ∈ Q1. It is straightfor-

ward to check that ϕ is an affine linear transformation that restricts to an isomorphism

AffSpan(∇(Q, θ,0,u)) → AffSpan(∇(Q′, θ′)) with the properties (i) and (ii) in Defini-

tion 2.3. �

Well-studied examples of flow polytopes are the Birkhoff polytopes Bn, which are usu-

ally defined as the set of n×n real matrices with non-negative entries satisfying that every

row and column sum is 1. To realize them as quiver polytopes consider the complete bipar-

tite quiver K(n, n) that has n sources and n sinks, and an arrow pointing from each source

to each sink and set θ to be −1 on the sources and 1 on the sinks. Now after identifying

RK(n.n)1 with the vector space of n× n real matrices we see that Bn = ∇(K(n, n), θ).
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Chapter 3

Classification results

3.1 Classification of toric quiver varieties

Throughout this section Q stands for a quiver and θ ∈ ZQ0 for a weight such that ∇(Q, θ)

is non-empty. We say that we contract an arrow a ∈ Q1 which is not a loop when we pass

to the pair (Q̂, θ̂), where Q̂ is obtained from Q by removing a and glueing its endpoints

a−, a+ to a single vertex v ∈ Q̂0, and setting θ̂(v) := θ(a−) + θ(a+) whereas θ̂(w) = θ(w)

for all vertices w ∈ Q̂0 \ {v} = Q0 \ {a−, a+}.

Definition 3.1 Let Q be a quiver, θ ∈ ZQ0 a weight such that ∇(Q, θ) is non-empty.

(i) An arrow a ∈ Q1 is said to be removable if ∇(Q, θ) is integral-affinely equivalent to

∇(Q′, θ), where Q′ is obtained from Q by removing the arrow a, so Q′0 = Q0 and

Q′1 = Q1 \ {a}.

(ii) An arrow a ∈ Q1 is said to be contractible if ∇(Q, θ) is integral-affinely equivalent to

∇(Q̂, θ̂), where (Q̂, θ̂) is obtained from (Q, θ) by contracting the arrow a.

(iii) The pair (Q, θ) is called tight if there is no removable or contractible arrow in Q1.

An immediate corollary of Definition 3.1 is the following statement:

Proposition 3.2 Any quiver polyhedron ∇(Q, θ) is integral-affinely equivalent to some

∇(Q′, θ′), where (Q′, θ′) is tight. Moreover, (Q′, θ′) is obtained from (Q, θ) by successively

removing or contracting arrows.
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Remark 3.3 A characterization of the notions in Definition 3.1 in terms of stability con-

ditions can be deduced from Sections 3 and 4 of [4]. In particular it follows from Lemma 13

and the elements of Lemma 7 and Corollary 8 in [4], which we recalled in Proposition 2.18

and Corollary 2.19 that an arrow a is contractible if and only if Q1 \ {a} is θ-polystable.

Moreover an arrow is removable if and only if it is not contained in the unique maximal

θ-polystable subquiver of Q. These results along with part (i) of Corollary 2.19 imply

Corollary 3.6 below, for which we give a direct derivation from Definition 3.1. We further

note that in [4] a quiver is defined to be θ-tight if Q \ {a} is θ-stable for all a, hence by

the above discussion we see that a quiver is θ tight in the sense of Definition 12 of [4] if it

is connected and (Q, θ) is tight in the sense used in this thesis.

Lemma 3.4 (i) Denote by Q̂, θ̂ the quiver and weight obtained by contracting a ∈ Q1.

∇(Q̂, θ̂) is integral-affinely equivalent to the polyhedron

{x ∈ RQ1 | ∀b ∈ Q1 \ {a} : x(b) ≥ 0} ∩ F−1(θ).

(ii) The arrow a is contractible if and only if in the affine space F−1(θ) the halfspace {x ∈
F−1(θ) | x(a) ≥ 0} contains the polyhedron {x ∈ F−1(θ) | x(b) ≥ 0 ∀b ∈ Q1 \ {a}}.

Proof. Since the set of arrows of Q̂ can be identified with Q̂1 = Q1 \ {a}, we have the

projection map π : F−1(θ) → F ′−1(θ̂) obtained by forgetting the coordinate x(a). The

equation

x(a) = θ(a+)−
∑

b∈Q1\{a},b+=a+

x(b) +
∑

b∈Q1\{a},b−=a+

x(b)

shows that π is injective, hence it gives an affine linear isomorphism F−1(θ) ∩ ZQ1 and

F ′−1(θ̂) ∩ ZQ̂1 , and maps the lattice polyhedron

{x ∈ Q1 | ∀x ∈ Q1 \ {a} : x ≥ 0} ∩ F−1(θ)

onto ∇(Q̂, θ̂). This proves (i). Now from (i) it follows, that a is contractible if and only

if on the affine space F−1(θ) the inequality x(a) ≥ 0 is a consequence of the inequalities

x(b) ≥ 0 (b ∈ Q1 \ {a}), proving (ii). �

Lemma 3.5 (i) Denote by Q̂, θ̂ the quiver and weight obtained by removing a ∈ Q1.

∇(Q̂, θ̂) is integral-affinely isomorphic to the polyhedron ∇(Q, θ)∩{x ∈ RQ1 | x(a) =

0}.
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(ii) The arrow a is removable if and only if x(a) = 0 for all x ∈ ∇(Q, θ).

Proof. (i) follows similarily to (i) of Proposition 3.4 by considering that the projection

map π : F−1(θ) → F ′−1(θ̂) induces a linear isomorphism of lattices {x ∈ RQ1 | x(a) =

0} ∩ F−1(θ) ∩ ZQ1 and F ′−1(θ̂) ∩ ZQ̂1 , and (ii) follows trivially from (i). �

For an arrow a ∈ Q1 set ∇(Q, θ)x(a)=0 := {x ∈ ∇(Q, θ) | x(a) = 0}.

Corollary 3.6 (i) The pair (Q, θ) is tight if and only if the assignment a 7→ ∇(Q, θ)x(a)=0

gives a bijection between Q1 and the facets (codimension 1 faces) of ∇(Q, θ).

(ii) If (Q, θ) is tight, then dim(∇(Q, θ)) = χ(Q).

Proof. Lemmas 3.4 and 3.5 show that (Q, θ) is tight if and only if AffSpan(∇(Q, θ)) =

F−1(θ) and {x(a) = 0} ∩ F−1(θ) (a ∈ Q1) are distinct supporting hyperplanes of ∇(Q, θ)

in its affine span. �

The following simple sufficient condition for contractibility of an arrow turns out to

be sufficient for our purposes. For a subset S ⊆ Q0 set θ(S) :=
∑

v∈S θ(v). By (2.2) for

x ∈ F−1(θ) we have

θ(S) =
∑

a∈Q1,a+∈S

x(a)−
∑

a∈Q1,a−∈S

x(a) =
∑

a+∈S,a− /∈S

x(a)−
∑

a−∈S,a+ /∈S

x(a). (3.1)

Proposition 3.7 Suppose that S ⊂ Q0 has the property that there is at most one arrow a

with a+ ∈ S, a− /∈ S and at most one arrow b with b+ /∈ S and b− ∈ S. Then a (if exists)

is contractible when θ(S) ≥ 0 and b (if exists) is contractible when θ(S) ≤ 0.

Proof. By (3.1) we have θ(S) = x(a) − x(b), hence by Lemma 3.4 a or b is contractible,

depending on the sign of θ(S). �

Corollary 3.8 (i) Suppose that the vertex v ∈ Q0 has valency 2, and a, b ∈ Q1 are arrows

such that a+ = b− = v. Then the arrow a is contractible when θ(v) ≥ 0 and b is contractible

when θ(v) ≤ 0.

(ii) Suppose that for some c ∈ Q1, c− and c+ have valency 2, and a, b ∈ Q1 \ {c} with

a− = c− and b+ = c+. Then a is contractible when θ(c−) + θ(c+) ≤ 0 and b is contractible

when θ(c−) + θ(c+) ≥ 0.

Proof. Apply Proposition 3.7 with S = {v} to get (i) and with S = {c−, c+} to get (ii). �
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Proposition 3.9 Suppose that there are exactly two arrows a, b ∈ Q1 (none is a loop)

adjacent to some vertex v, and either a+ = b+ = v or a− = b− = v. Let Q′ be the quiver

obtained after replacing

by

u w

v

a b or

θ(u) + θ(v) θ(w) + θ(v)

−θ(v)

â b̂ by

u w

v

a b .

θ(u) + θ(v) θ(w) + θ(v)

−θ(v)

â b̂

That is, replace the arrows a, b by â and b̂ obtained by reversing them, and consider the

weight θ′ ∈ ZQ′1 given by θ′(v) = −θ(v), θ′(u) = θ(u) + θ(v) when u 6= v is an endpoint

of a or b , and θ′(z) = θ(z) for all other z ∈ Q′0 = Q0. Then the polyhedra ∇(Q, θ) and

∇(Q′, θ′) are integral-affinely equivalent.

Proof. It is straightforward to check that the map ϕ : RQ1 → RQ′1 given by ϕ(x)(â) = x(b),

ϕ(x)(b̂) = x(a), and ϕ(x)(c) = x(c) for all c ∈ Q′1 \ {â, b̂} = Q1 \ {a, b} restricts to an

isomorphism between AffSpan(∇(Q, θ)) and AffSpan(∇(Q′, θ′)) satisfying (i) and (ii) in

Definition 2.3. �

Remark 3.10 Proposition 3.9 can be interpreted in terms of reflection transformations:

it was shown in Sections 2 and 3 in [30] (see also Theorem 23 in [43]) that reflection

transformations on representations of quivers induce isomorphisms of algebras of semi-

invariants. Now under our assumptions a reflection transformation at vertex v fixes the

dimension vector (1, . . . , 1).

Proposition 3.11 Suppose that Q is the union of its subquivers Q′, Q′′ which are either

disjoint or have a single common vertex v. Identify RQ′1 ⊕RQ′′1 = RQ1 in the obvious way,

and let θ′ ∈ ZQ′0 ⊂ ZQ0, θ′′ ∈ ZQ′′0 ⊂ ZQ0 be the unique weights with θ = θ′ + θ′′ and

θ′(v) = −
∑

w∈Q′0\{v}
θ(w), θ′′(v) = −

∑
w∈Q′′0\{v}

θ(w) when Q′0 ∩Q′′0 = {v}.
(i) Then the quiver polyhedron ∇(Q, θ) is the product of the polyhedra ∇(Q′, θ′) and

∇(Q′′, θ′′).

(ii) We have M(Q, θ) ∼=M(Q′, θ′)×M(Q′′, θ′′).

Proof. (i) A point x ∈ RQ1 uniquely decomposes as x = x′ + x′′, where x′(a) = 0 for all

a /∈ Q′1 and x′′(a) = 0 for all a /∈ Q′′1. It is obvious by definition of quiver polyhedra that

x ∈ ∇(Q, θ) if and only if x′ ∈ ∇(Q′, θ′) and x′′ ∈ ∇(Q′′, θ′′).

(ii) was observed already in [25] and follows from (i) by Corollary 2.14. �
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Definition 3.12 (i) We call a connected undirected graph Γ (with at least one edge)

prime if it is not the union of proper subgraphs Γ′,Γ′′ having only one common vertex

(i.e. it is 2-vertex-connected). A quiver Q will be called prime if its underlying graph

is prime.

(ii) We call a positive dimensional toric variety (resp. a lattice polyhedron) prime if it is

not the product of lower dimensional toric varieties (resp. lattice polyhedra).

Obviously any positive dimensional toric variety is the product of prime toric varieties,

and this product decomposition is unique up to the order of the factors (see for example

Theorem 2.2 in [23]). It is not immediate from the definition, but we shall show in Theo-

rem 3.13 (iii) that the prime factors of a toric quiver variety (resp. a quiver polyhedron)

are quiver varieties (resp. quiver polyhedra) as well.

Note that a toric quiver variety associated to a non-prime quiver may well be prime,

and conversely, a toric quiver variety associated to a prime quiver can be non-prime, as it

is shown by the following example:

−2

1

1

2

−2

The quiver in the picture is prime but the moduli space corresponding to this weight is

P1 × P1. However, as shown by Theorem 3.13 below, when the tightness of some (Q, θ) is

assumed, decomposing Q into its unique maximal prime components gives us the unique

decomposition of M(Q, θ) as a product of prime toric varieties.

Theorem 3.13 (i) Let Qi (i = 1, . . . , k) be the maximal prime subquivers of Q, and

denote by θi ∈ ZQi
0 the unique weights satisfying

∑k
i=1 θ

i(v) = θ(v) for all v ∈
Q0 and

∑
v∈Qi

0
θi(v) = 0 for all i. Then ∇(Q, θ) is integral-affinely equivalent to∏k

i=1∇(Qi, θi), and hence M(Q, θ) ∼=
∏k

i=1M(Qi, θi). Moreover, if (Q, θ) is tight,

then the (Qi, θi) are all tight.

(ii) If (Q, θ) is tight then M(Q, θ) (resp. ∇(Q, θ)) is prime if and only if Q is prime.

(iii) Any positive dimensional toric quiver variety (resp. quiver polyhedron) is the product

of prime toric quiver varieties (resp. quiver polyhedra).

27



C
E

U
eT

D
C

ol
le

ct
io

n

Proof. The isomorphism M(Q, θ) ∼=
∏k

i=1M(Qi, θi) follows from Proposition 3.11 and

induction on the number of prime components. The second statement in (i) follows from

this isomorphism and Corollary 3.6.

Next we turn to the proof of (ii), so suppose that (Q, θ) is tight. If Q is not prime,

then χ(Qi) > 0 for all i, hence neither of M(Q, θ) and ∇(Q, θ) are prime by (i). To

show the reverse implication for M(Q, θ) assume on the contrary that Q is prime, and

M(Q, θ) ∼= X ′ ×X ′′ where X ′, X ′′ are positive dimensional toric varieties. Note that then

Q1 does not contain loops. Let {εa | a ∈ Q1} be a Z-basis of ZQ1 , and for each vertex

v ∈ Q0 let us define Cv :=
∑

a+=v εa −
∑

a−=v εa. Recall from Remark 2.20 that we can

identify the lattice of one-parameter subgroups NQ of M(Q, θ) with ZQ1/〈Cv | v ∈ Q0〉,
and the ray generators of the fan with the cosets of the εa. We will write simply N instead

of NQ for the rest of the proof and denote by N ′, Σ′ and N ′′, Σ′′ the one-parameter

subgroups and fans of X ′ and X ′′ respectively. Recall from Section 2.1 that Σ = Σ′×Σ′′ =

{σ′ × σ′′ | σ′ ∈ Σ′, σ′′ ∈ Σ′′}. Denote by π′ : N → N ′, π′′ : N → N ′′ the natural

projections to the sets of one-parameter subgroups of the tori in X ′ and X ′′. For each ray

generator εa we have either π′(εa) = 0 or π′′(εa) = 0. Since (Q, θ) is tight we obtain a

partition of Q1 into two disjoint non-empty sets of arrows: Q′1 = {a ∈ Q1 | π′′(a) = 0}
and Q′′1 = {a ∈ Q1 | π′(a) = 0}. Since Q is prime, it is connected, hence there exists a

vertex w incident to arrows both from Q′1 and Q′′1. Let Π′ and Π′′ denote the projections

from ZQ1 to ZQ′1 and ZQ′′1 . By choice of w we have Π′(Cw) 6= 0 and Π′′(Cw) 6= 0. Writing

ϕ for the natural map from ZQ1 to N ∼= ZQ1/〈Cv | v ∈ Q0〉 we have ϕ ◦ Π′ = π′ ◦ ϕ
and ϕ ◦ Π′′ = π′′ ◦ ϕ, so ker(ϕ) = 〈Cv | v ∈ Q0〉 is closed under Π′ and Π′′. Taking into

account that
∑

v∈Q0
Cv = 0 we deduce that Π′(Cw) =

∑
v∈Q0\{w} λvCv for some λv ∈ Z.

Set S ′ := {v ∈ Q0 | λv 6= 0}. Since each arrow appears in exactly two of the Cv, it follows

that S ′ contains all vertices connected to w by an arrow in Q′1, hence S ′ is non-empty.

Moreover, the set of arrows having exactly one endpoint in S ′ are exactly those arrows

in Q′1 that are adjacent to w. Thus S ′′ := Q0 \ (S ′ ∪ {w}) contains all vertices that are

connected to w by an arrow from Q′′1, hence S ′′ is non-empty. Furthermore, there are no

arrows in Q1 connecting a vertex from S ′ to a vertex in S ′′. It follows that Q is the union

of its full subquivers spanned by the vertex sets S ′ ∪ {w} and S ′′ ∪ {w}, having only one

common vertex w and no common arrow. This contradicts the assumption that Q was

prime. We have shown that if Q is prime then M(Q, θ) is prime, which in turn - by the

properties of products we recalled in Section 2.1 - implies that ∇(Q, θ) is prime, hence we

are done with (ii).
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Statement (iii) follows from (i), (ii) and Proposition 3.2. �

Note that if χ(Γ) ≥ 2 and Γ is prime, then Γ contains no loops (i.e. an edge with

identical endpoints), every vertex of Γ has valency at least 2, and Γ has at least two

vertices with valency at least 3.

Definition 3.14 For d = 2, 3, . . . denote by Ld the set of prime graphs Γ with χ(Γ) = d

in which all vertices have valency at least 3. Let Rd stand for the set of quivers Q obtained

from a graph Γ ∈ Ld by orienting some of the edges somehow and putting a sink on the

remaining edges (that is, we replace an edge by a path of length 2 in which both edges are

pointing towards the new vertex in the middle). We shall call Γ the skeleton S(Q) of Q;

note that χ(Q) = χ(S(Q)).

Starting from Q, its skeleton Γ = S(Q) can be recovered as follows: Γ0 is the subset

of Q0 consisting of the valency 3 vertices. For each path in the underlying graph of Q

that connects two vertices in Γ0 and whose inner vertices have valency 2 we put an edge.

Clearly, a quiver Q with χ(Q) = d ≥ 2 belongs to Rd if and only if the following conditions

hold:

(i) Q is prime.

(ii) There is no arrow of Q connecting valency 2 vertices.

(iii) Every valency 2 vertex of Q is a sink.

Furthermore, setR :=
⊔∞
d=1Rd whereR1 is the 2-element set consisting of the 2-Kronecker

quiver and the quiver with a single vertex and a loop.

Proposition 3.15 For any d ≥ 2, Γ ∈ Ld and Q ∈ Rd we have the inequalities

|Γ0| ≤ 2d− 2, |Γ1| ≤ 3d− 3, |Q0| ≤ 5(d− 1), |Q1| ≤ 6(d− 1).

In particular, Ld and Rd are finite for each positive integer d.

Proof. Take Γ ∈ Ld where d ≥ 2. Then Γ contains no loops, and denoting by e the number

of edges and by v the number of vertices of Γ, we have the inequality 2e ≥ 3v, since each

vertex is adjacent to at least three edges. On the other hand e = v − 1 + d. We conclude

that v ≤ 2d−2 and hence e ≤ 3d−3. For Q ∈ Rd with S(Q) = Γ we have that |Q0| ≤ v+e

and |Q1| ≤ 2e. �
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Theorem 3.16 (i) Any d-dimensional prime quiver polyhedron is integral affinely equiv-

alent to ∇(Q, θ), where (Q, θ) is a tight-pair and Q ∈ Rd. Hence any d-dimensional

prime toric quiver varietyM(Q, θ) can be realized by a tight pair (Q, θ) where Q ∈ Rd

(consequently |Q0| ≤ 5(d− 1) and |Q1| ≤ 6(d− 1) when d ≥ 2).

(ii) For each positive integer d up to isomorphism there are only finitely many d-dimensional

toric quiver varieties.

Proof. It follows from Propositions 3.2, Corollary 3.8 and Proposition 3.9 that any d-

dimensional prime toric quiver variety (or polyhedron) can be realized by a tight pair (Q, θ)

whereQ ∈ Rd; the bounds on vertex and arrow sets of the quiver follow by Proposition 3.15.

Statement (ii) follows from (i) and the well-known finiteness of possible GIT-quotients

(cf. [45]). More concretely, for a given quiver Q we say that the weights θ and θ′ are

equivalent if Rep(Q)θ−ss = Rep(Q)θ
′−ss; this implies that M(Q, θ) = M(Q, θ′). For a

given representation R of Q, the set of weights θ for which R is θ-semistable is determined

by the set of dimension vectors of subrepresentations of R (see Proposition 2.4). Since

there are finitely many possibilities for the dimension vectors of a subrepresentation of a

representation with dimension vector (1, . . . , 1), up to equivalence there are only finitely

many different weights, hence there are finitely many possible moduli spaces for a fixed Q.

�

Remark 3.17 Part (i) of Theorem 3.16 could be deduced from the results in [3] and [4].

From the proof of Theorem 7 in [3] it follows that the bounds on the number of vertices and

edges hold whenever the canonical weight is tight for a quiver. While in [3] it is assumed

that Q has no oriented cycles, their argument for the bound applies to the general case as

well. Moreover Lemma 13 in [4] shows that every toric quiver variety can be realized by a

pair (Q, θ) where Q is tight with the canonical weight. These two results imply part (i) of

Theorem 3.16.

Remark 3.18 We mention that for a fixed quiver Q it is possible to give an algorithm

to produce a representative for each of the finitely many equivalence classes of weights.

The change of the moduli spaces of a given quiver when we vary the weight is studied in

[25], [26], where the inequalities determining the chamber system were given. To find an

explicit weight in each chamber one can use the Fourier-Motzkin algorithm.

Theorem 3.16 is sharp, and the reductions on the quiver are optimal, in the sense that

in general one can not hope for reductions that would yield smaller quivers:
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Proposition 3.19 For each natural number d ≥ 2 there exists a d-dimensional prime toric

quiver varietyM(Q, θ) with |Q1| = 6(d−1), |Q0| = 5(d−1), such that for any other quiver

and weight Q′, θ′ with M(Q, θ) ∼=M(Q′, θ′) (isomorphism of toric varieties) we have that

|Q′1| ≥ |Q1| and |Q′0| ≥ |Q0|.

Proof. In Example 3.20 for each d ≥ 2 we show a connected tight pair (Q, θ) with Q prime,

|Q1| = 6(d − 1), |Q0| = 5(d − 1), hence d = χ(Q) = dim(M(Q, θ)). Take another quiver

and weight Q′, θ′ with M(Q, θ) ∼= M(Q′, θ′). Since contracting or removing an arrow

does not increase the number of arrows or vertices, there exists a tight pair (Q′′, θ′′) with

M(Q′, θ′) ∼=M(Q′′, θ′′), and |Q′1| ≥ |Q′′1|, |Q′0| ≥ |Q′′0|. By Corollary 3.6 (i) |Q1| equals the

number of facets of the polytope ∇(Q, θ), which equals the number of rays in the toric fan

of M(Q, θ). This is an invariant of the toric variety, implying by M(Q′′, θ′) ∼= M(Q, θ)

that |Q′′1| = |Q1|. Moreover, by Corollary 3.6 (ii) we have χ(Q′′) = χ(Q), thus |Q′′0| =

|Q′′1| − χ(Q′′) + χ0(Q′′) = |Q1| − χ(Q) + χ0(Q′′) ≥ |Q1| − χ(Q) + 1 = |Q0|. �

Example 3.20 For d ≥ 3 consider the graph below with 2(d− 1) vertices. Removing any

two edges from this graph we obtain a connected graph. Now let Q be the quiver obtained

by putting a sink on each of the edges (so the graph below is the skeleton of Q). Then

(Q, δQ) is tight by Corollary 3.33 (δQ takes value 2 on each sink and value −3 on each

source).

Relaxing the condition on tightness it is possible to come up with a shorter list of

quivers whose moduli spaces exhaust all possible projective toric quiver varieties. A key

role is played by the following statement:

Proposition 3.21 Suppose that Q has no oriented cycles and a ∈ Q1 is an arrow such

that contracting it we get a quiver (i.e. the quiver Q̂ described in Definition 3.1) that has

no oriented cycles. Then for a sufficiently large integer d we have that a is contractible

for the pair (Q, θ + d(εa+ − εa−)), where εv ∈ ZQ0 stands for the characteristic function of

v ∈ Q0.

Proof. Set ψd = θ + d(εa+ − εa−), and note that ψ̂d = θ̂ for all d. Considering the

embeddings π : F−1(ψd)→ F ′−1(θ̂) described in the proof of Lemma 3.4, we have that for

any d, any y ∈ F−1(ψd) and b ∈ Q1 \ {a},

min{x(b) | x ∈ ∇(Q̂, θ̂)} ≤ y(b) ≤ max{x(b) | x ∈ ∇(Q̂, θ̂)}
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Since we assumed that Q̂ has no oriented cycles, the minimum and the maximum in the

inequality above are finite. Now considering the arrows incident to a− we obtain that for

any x ∈ F−1(ψd) we have x(a) = d − θ(a−) +
∑

b+=a− x(b) −
∑

b−=a−,b 6=a x(b). Thus for

d ≥ θ(a−)−min{
∑

b+=a− x(b)−
∑

b−=a−,b 6=a x(b) | x ∈ F ′−1(θ̂)} the arrow a is contractible

for (Q,ψd) by Lemma 3.4. �

For d ≥ 2 introduce a partial ordering ≥ on Ld: we set Γ ≥ Γ′ if Γ′ is obtained from

Γ by contracting an edge, and take the transitive closure of this relation. Now for each

positive integer d ≥ 2 denote by L′d ⊆ Ld the set of undirected graphs Γ ∈ Ld that are

maximal with respect to the relation ≥, and set L′1 := L1. It is easy to see that for d ≥ 2,

L′d consists of 3-regular graphs (i.e. graphs in which all vertices have valency 3). Now

denote by R′d the quivers which are obtained by putting a sink on each edge from a graph

from L′d.

Theorem 3.22 For d ≥ 2 any prime d-dimensional quiver polytope is integral affinely

equivalent to ∇(Q, θ) where Q ∈ R′d, and hence any prime d-dimensional projective toric

quiver variety is isomorphic to M(Q, θ) where Q ∈ R′d.

Proof. This is an immediate consequence of Theorem 3.16 and Proposition 3.21. �

Example 3.23 L′3 consists of two graphs:

Now put a sink on each edge of the above graphs. The first of the two resulting quivers

is not tight for the canonical weight. After tightening we obtain the following two quivers

among whose moduli spaces all 3-dimensional prime projective toric quiver varieties occur:

3.2 The 2-dimensional case

As an illustration of the general classification scheme explained in Section 3.1, we quickly

reproduce the classification of 2-dimensional toric projective quiver varieties (this result is

known, see Theorem 5.2 in [25] and Example 6.14 in [20]):
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Proposition 3.24 (i) A 2-dimensional projective toric quiver variety is isomorphic to one

of the following:

The projective plane P2, the blow up of P2 in one, two, or three points in general position,

or P1 × P1.

(ii) The above varieties are realized (in the order of their listing) by the following quiver-

weight pairs:

−1

1

1

1

−2 −3

2

1

2

−2 −4

3

2

2

−3 −3

2

2

2

−3

−1

−1

1

1

Proof. The only acyclic quiver in R1 is the Kronecker quiver. The only weights yielding

a non-empty moduli space are (−1, 1) and its positive integer multiples, hence the corre-

sponding moduli space is P1. Thus P1×P1, the product of two projective lines occurs as a

2-dimensional toric quiver variety, say for the disjoint union of two copies of −1 1 .

L2 consists of the graph with two vertices and three edges connecting them (say by

Proposition 3.15). Thus R′2 consists of the following quiver:

A:

Choosing a spanning tree T in Q, the x(a) with a ∈ Q1 \T1 can be used as free coordinates

in AffSpan(∇(Q, θ)). For example, take in the quiver A the spanning tree with thick arrows

33



C
E

U
eT

D
C

ol
le

ct
io

n

Figure 3.1: The polytope ∇(A, θ)

x

y

x+ y = −θ1

y = θ3

x = θ2

x+ y = −θ1 − θ4

Defining inequalitites:

0 ≤ x ≤ θ2

0 ≤ y ≤ θ3

−θ4 − θ1 ≤ x+ y ≤ −θ1.

in the following figure:

AffSpan(∇(A, θ)):

θ1

θ2

θ3

θ4

θ5

∑5
i=1 θi = 0

x

y

−θ1 − x− y

θ2 − x
θ3 − y

θ4 + θ1 + x+ y

Clearly∇(A, θ) is integral-affinely equivalent to the polytope in R2 = {(x, y) | x, y ∈ R}
shown on Figure 2.1. Depending on the order of −θ1, θ3,−θ1− θ4, θ2, its normal fan is one

of the following:

σ1

σ2σ3

σ1

σ4σ3

σ2

σ1

σ2

σ3

σ4

σ1

σ2

σ3

σ4

σ5
σ1

σ2

σ3

σ4

σ5

σ6
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It is well known that the corresponding toric varieties are the projective plane P2, P1× P1

and the projective plane blown up in one, two, or three points in general position, so (i)

is proved. Taking into account the explicit inequalities in Figure 2.1, we see that for the

pairs (A, θ) given in (ii), the variety X∇(A,θ) =M(A, θ) has the desired isomorphism type.

�

Remark 3.25 (i) Since the toric fan of the blow up of P2 in three generic points has 6

rays, to realize it as a toric quiver variety we need a quiver with at least 6 arrows and

hence with at least 5 vertices (see Proposition 3.19).

(ii) It is also notable in dimension 2 that each toric quiver variety can be realized as

M(Q, δQ) by precisely one quiver Q from Rd. This does not hold in higher dimensions.

For example consider the following quivers:

These quivers are both tight with their canonical weights, and give isomorpic moduli,

since they are both obtained after tightening:

3.3 Affine toric quiver varieties

One of the nice features of toric quiver varieties is that the prinicipal affine open sets

corresponding to the vertices of quiver polyhedra are toric quiver varieties themselves.

Recall from Corollary 2.14 that for a vertex v ∈ ∇(Q, θ) the set supp(v) is a forest. Fix

a vertex v and let T i (i = 1, . . . , r) denote the trees in supp(v). Let (Qv, θv) denote the

quiver we get by contracting every arrow in supp(v). It follows easily (say by Proposition

2.17) that θ(T i) = 0 for all i, hence θv = 0.
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Proposition 3.26 For any vertex v of the quiver polyhedron ∇(Q, θ) the affine open toric

subvariety Uv in M(Q, θ) is isomorphic to M(Qv, 0).

Proof. Comparing (iii) from Corollary 2.14 and (i) from Lemma 3.4 we see that the cone

of both varieties are integral-affinely equivalent to

{x ∈ RQ1 | ∀b ∈ Q1 \ supp(v) : x(b) ≥ 0} ∩ F−1(0).

�

Now for a vertex v ∈ ∇(Q, θ) let R be a representation with supp(R) = supp(m),

then R is polystable and it decomposes as a direct sum of θ-stable representations that

are obtained by restricting R to some connected component of supp(R). Setting ξ ∈ Um
to be the image of R in M(Q, θ) one can check without difficulty that the local quiver

Qξ is the same as Qv and αξ takes value 1 on every vertex. Hence we obtained that in

this particular situation the ”étale isomorphism” of Theorem 2.5 can be replaced by a

(toric) isomorphism, that maps surjectively onto M(Qξ, αξ, 0). We will show that this is

not entirely specific to the toric case.

Consider the following situation. Let F be a (not necessarily full) subforest of Q which

is the disjoint union of trees F =
∐r

i=1 T
i . Let α be a dimension vector taking the same

value di on the vertices of each T i (i = 1, . . . , r). Let θ ∈ ZQ0 be a weight such that

there exist positive integers na (a ∈ F1) with θ(v) =
∑

a∈F1:a+=v na −
∑

a∈F1:a−=v na. The

representation space Rep(Q,α) contains the Zariski dense open subset

UF := {R ∈ Rep(Q,α) | ∀a ∈ F1 : det(R(a)) 6= 0}.

Note that UF is a principal affine open subset in Rep(Q,α) given by the non-vanishing

of the relative invariant f : R 7→
∏

a∈F1
detna(R(a)) of weight θ, hence UF is contained

in Rep(Q,α)θ−ss. Moreover, UF is π-saturated with respect to the quotient morphism π :

Rep(Q,α)θ−ss →M(Q,α, θ), hence π maps UF onto an open subset π(UF ) ∼= UF //GL(α)

of M(Q,α, θ) (here for an affine GL(α)-variety X we denote by X // GL(α) the affine

quotient, that is, the variety with coordinate ring the ring of invariants O(X)GL(α)), see

[36]. Denote by Q̂ the quiver obtained from Q by contracting each connected component

T i of F to a single vertex ti (i = 1, . . . , r). So Q̂0 = (Q0 \ F0)
∐
{t1, . . . , tr} and its arrow

set can be identified with Q1 \F1, but if an end vertex of an arrow belongs to T i in Q then

viewed as an arrow in Q̂ the correspoding end vertex is ti (in particular, an arrow in Q1\F1
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connecting two vertices of T i becomes a loop at vertex ti). Denote by α̂ the dimension

vector obtained by contracting α accordingly, so α̂(ti) = di for i = 1, . . . , r and α̂(v) = α(v)

for v ∈ Q̂0 \ {t1, . . . , tr}. Sometimes we shall identify GL(α̂) with the subgroup of GL(α)

consisting of the elements g ∈ GL(α) with the property that g(v) = g(w) whenever v, w

belong to the same component T i of F . We have a GL(α̂)-equivariant embedding

ι : Rep(Q̂, α̂)→ Rep(Q,α) (3.2)

defined by ι(x)(a) = x(a) for a ∈ Q̂1 and ι(x)(a) the identity matrix for a ∈ Q1 \ Q̂1.

Clearly Im(ι) ⊆ Rep(Q,α)θ−ss.

Proposition 3.27 (i) UF ∼= GL(α)×GL(α̂) Rep(Q̂, α̂) as affine GL(α)-varieties.

(ii) The map ι induces an isomorphism ῑ :M(Q̂, α̂, 0)
∼=−→ π(UF ) ⊆M(Q,α, θ).

Proof. (i) Set p := ι(0) ∈ Rep(Q,α). Clearly GL(α̂) is the stabilizer of p in GL(α) acting

on Rep(Q,α), hence the GL(α)-orbit O of p is isomorphic to GL(α)/GL(α̂) via the map

sending the coset gGL(α̂) to g ·p. On the other hand O is the subset consisting of all those

points R ∈ Rep(Q,α) for which det(R(a)) 6= 0 for a ∈ F1 and R(a) = 0 for all a /∈ F1.

This can be shown by induction on the number of arrows of F , using the assumption that

F is the disjoint union of trees. Recall also that the arrow set of Q̂ is identified with a

subset Q1 \ F1. This yields an obvious identification UF = Rep(Q̂, α̂) × O. Projection

ϕ : UF → O onto the second component is GL(α)-equivariant by construction. Moreover,

the fibre ϕ−1(p) = ι(Rep(Q̂, α̂)) ∼= Rep(Q̂, α̂) as StabGL(α)(p) = GL(α̂)-varieties. It is well

known that this implies the isomorphism UF ∼= GL(α) ×GL(α̂) Rep(Q̂, α̂), see for example

Lemma 5.17 in [8].

(ii) It follows from (i) that UF //GL(α) ∼= Rep(Q̂, α̂)//GL(α̂) =M(Q̂, α̂, 0) by standard

properties of associated fiber products. Furthermore, taking into account the proof of (i)

we see UF // GL(α) = π(ϕ−1(p)) = π(ι(Rep(Q̂, α̂)) where π is the quotient morphism

Rep(Q,α)θ−ss →M(Q,α, θ). �

Now, still in the situation of Proposition 3.27, consider the representationR ∈ Rep(Q,α)

which is the identity matrix on the arrows of F and 0 elsewhere, clearly we have R ∈ UF .

Let Ri (i = 1, . . . , r) denote the representation whose dimension vector takes values 1

on the vertices of T i and 0 on the rest of the vertices, and Ri(a) = 1 when a ∈ T i1 and

Ri(a) = 0 otherwise. We have R = Rd1
1 ⊕ · · · ⊕ Rdi

i and it follows from na > 0 and
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Proposition 2.17 that the representations Ri are θ-stable. Now one easily checks from the

definition that the local quiver setting (Qπ(R), απ(R)) is the same as (Q̂, α̂), hence the situ-

ation in Proposition 3.27 can be viewed as a special case of Theorem 2.5 in which one has

an isomorphism between an open subset of the moduli space and the affine moduli space

of the local quiver setting. We also point out that Proposition 3.26 can be regarded as a

special case of Proposition 3.27.

Conversely, any affine toric quiver variety M(Q′, 0) can be obtained as Um ⊆M(Q, θ)

for some projective toric quiver variety M(Q, θ) and a vertex m of the quiver polytope

∇(Q, θ). In fact we have a more general result, which is a refinement for the toric case of

Theorem 2.2 in [15]:

Theorem 3.28 For any quiver polyhedron ∇(Q, θ) with k vertices there exists a bipartite

quiver Q̃, a weight θ′ ∈ ZQ̃1, and a set m1, . . . ,mk of vertices of the quiver polytope ∇(Q̃, θ′)

such that the quasi-projective toric variety M(Q, θ) is isomorphic to the open subvariety⋃k
i=1 Umi

of the projective toric quiver variety M(Q̃, θ′).

Proof. Double the quiver Q to get a bipartite quiver Q̃ as on page 56 in [40]: to each

v ∈ Q0 there corresponds a source v− and a sink v+ in Q̃, for each a ∈ Q1 there is an arrow

in Q̃ denoted by the same symbol a, such that if a ∈ Q1 goes from v to w, then a ∈ Q̃1

goes from v− to w+, and for each v ∈ Q0 there is a new arrow ev ∈ Q̃1 from v− to v+.

Denote by θ̃ ∈ ZQ̃0 the weight θ̃(v−) = 0, θ̃(v+) = θ(v), and set κ ∈ ZQ̃0 with κ(v−) = −1

and κ(v+) = 1 for all v ∈ Q0.

Suppose that F is a θ-stable subtree in Q. Denote by F̃ the subquiver of Q̃ consisting

of the arrows with the same label as the arrows of F , in addition to the arrows ev for each

v ∈ F0. It is clear that F̃ is a subtree of Q̃. We claim that F̃ is (θ̃+dκ)-stable for sufficiently

large d. Obviously (θ̃ + dκ)(F̃0) = 0. Let S̃ be a proper successor closed subset of F̃0 in

Q̃. Denote by S ⊂ F0 the set consisting of v ∈ F0 with v+ ∈ S̃ (note that v− ∈ S implies

v+ ∈ S, since ev ∈ F̃ ). We have the equality (θ̃ + dκ)(S̃) = θ(S) +
∑

v+∈S̃,v− /∈S̃(θ(v) + d).

If the second summand is the empty sum (i.e. v+ ∈ S̃ implies v− ∈ S̃), then S is successor

closed, hence θ(S) > 0 by assumption. Otherwise the sum is positive for sufficiently large

d. This proves the claim. It follows that if d is sufficiently large, then for any vertex m of

∇(Q, θ), setting F := supp(m), there exists a vertex m̃ of ∇(Q̃, θ̃+dκ) with supp(m̃) = F̃ .

Denote by µ : Rep(Q) → Rep(Q̃) the map defined by µ(x)(ev) = 1 for each v ∈ Q0,

and µ(x)(a) = x(a) for all a ∈ Q̃1. This is equivariant, where we identify (C×)Q0 with

the stabilizer of µ(0) in (C×)Q̃0 . The above considerations show that µ(Rep(Q)θ−ss) ⊆
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Rep(Q)(θ̃+dκ)−ss, whence µ induces a morphism µ̄ : M(Q, θ) → M(Q̃, θ̃ + dκ). Restrict

µ̄ to the affine open subset Um ⊆ M(Q, θ), and compose µ̄|Um with the isomorphism

ῑ :M(Qm, 0)→ Um ⊆M(Q, θ) from Proposition 3.27. By construction we see that µ̄|Um◦ ῑ
is the isomorphism M(Qm, 0)→ Um̃ of Proposition 3.26. It follows that µ̄|Um : Um → Um̃

is an isomorphism. As m ranges over the vertices of ∇(Q, θ), these isomorphisms glue

together to the isomorphism µ̄ :M(Q, θ)→
⋃
m̃ Um̃ ⊆M(Q̃, θ̃). �

We note that similarly to Theorem 2.2 in [15], it is possible to embed M(Q, θ) as an

open subvariety into a projective varietyM(Q̃, θ′), such that for any vertex m′ of ∇(Q̃, θ′)

the affine open subvariety Um′ ⊆ M(Q̃, θ′) is isomorphic to Um ⊆ M(Q, θ) for some

vertex m of ∇(Q, θ) (but of course typically ∇(Q̃, θ′) has more vertices than ∇(Q, θ)).

In particular, a smooth variety M(Q, θ) can be embedded into a smooth projective toric

quiver variety ∇(Q̃, θ′), where Q̃ is bipartite.

Next we apply our results from Section 3.1 to the special case θ = 0. It follows from

Proposition 2.17 that Q is 0-stable if and only if Q is strongly connected, that is, for any

ordered pair v, w ∈ Q0 there is an oriented path in Q from v to w.

Proposition 3.29 Let Q be a prime quiver with χ(Q) ≥ 2, such that (Q, 0) is tight. Then

|Q0| ≤ χ(Q)− 1 and consequently |Q1| = |Q0|+ χ(Q)− 1 ≤ 2(χ(Q)− 1)).

Proof. Since Q is prime and is not just a single loop, it contains no loops at all. Suppose

v ∈ Q0 and a ∈ Q1 is the only arrow with a− = v. The equations (2.2) imply that for

any x ∈ ∇(Q, 0) we have x(a) =
∑

b+=v x(b), so by Lemma 3.4 the arrow a is contractible.

The case when a is the only arrow with a+ = v is similar. Thus for any v ∈ Q0 we have

|{a ∈ Q1 | a− = v}| ≥ 2 and |{a ∈ Q1 | a+ = v}| ≥ 2 (this is shown also in Lemma 13 (iii)

of [4]). In particular, the valency of any vertex is at least 4, hence similar considerations

as in the proof of Proposition 3.15 yield the desired bound on |Q0|. �

Denote by R′′d the set of prime quivers Q with χ(Q) = d and (Q, 0) tight. Then R′′1
consists of the one-vertex quiver with a single loop, R′′2 is empty, R′′3 consists of the quiver

with two vertices, and two arrows from each vertex to the other (so four arrows in total).

R′′4 consists of the three quivers:
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Example 3.30 Consider the quiver Q with d vertices and 2d arrows a1, . . . , ad, b1, . . . , bd,

where a1 . . . ad is a primitive cycle and bi is obtained by reversing ai for i = 1, . . . , d.

Then χ(Q) = d + 1, and after the removal of any of the arrows of Q we are left with a

strongly connected quiver. So (Q, 0) is tight, showing that the bound in Proposition 3.29

is sharp. The coordinate ring O(M(Q, 0)) is the subalgebra of O(Rep(Q)) generated by

{x(ai)x(bi), x(a1) · · ·x(ad), x(b1) · · · x(bd) | i = 1, . . . , d}, so it is the factor ring of the (d+2)-

variable polynomial ring C[t1, . . . , td+2] modulo the ideal generated by t1 · · · td − td+1td+2.

3.4 Reflexive polytopes

A full dimensional lattice polytope in Rd is called reflexive if its facet presentation is

P = {m ∈ Rd | 〈m,uF 〉 ≥ −1 for all facets F}.

From the point of view of toric geometry the study of reflexive polytopes is motivated by

the fact that the class of toric varieties associated to them are precisely the Gorenstein

Fano toric varieties (see Chapter 8.3 of [12] for an explanation of the terminology and some

basic results). Reflexive polytopes also play a role in the study of mirror symmetry (see

[5]). As an application of the classification results on quiver polyhedra, we have compiled

a full list of quiver polytopes that are integral-affinely equivalent to a reflexive polytope

up to dimension 3. Similar work has been done in [3], however the result there is different

from ours - they found 39 different reflexive flow polytopes in dimension 3, whereas our

list consists of 53 - hence it seemed reasonable to provide the details of our computations.

Note that the property of being reflexive is not invariant under translations, however

it is invariant under linear automorphisms of the character lattice. Moreover reflexive

polytopes are by definition full dimensional. Consequently we are interested in finding

quiver polytopes that can be translated into a lattice polytope ∇ such that ∇ is reflexive

when considered in the lattice AffSpan(∇)∩ZQ1 . The following proposition shows us, that

it is enough to consider quivers with their canonical weights.

Proposition 3.31 If (Q, θ) is tight then ∇(Q, θ) is integral-affinely equivalent to a reflex-

ive polytope if and only if θ is the canonical weight.

Proof. Note that the origin is contained in every reflexive polytope (in fact, it is the unique

interior lattice point). Recall from Remark 2.20 that when (Q, θ) is tight the polytope
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∇(Q, θ)− v for any v ∈ AffSpan(∇(Q, θ)) ∩ ZQ1 has facet representation

{x ∈MQ
R | ∀a ∈ Q1 : 〈x, ua〉 ≤ −v(a)}.

It follows that ∇(Q, θ) is integral-affinely equivalent to a reflexive polytope if and only if

(1, . . . , 1) ∈ ∇(Q, θ), which happens precisely when θ is the canonical weight. �

By slight abuse of the terminology, we will be calling a quiver polytope reflexive, when-

ever it is integral-affinely equivalent to a reflexive polytope and note that by the above

argument this is equivalent to saying that ∇(Q, θ) − (1, . . . , 1) is a reflexive polytope in

the lattice MQ. Next we derive a combinatorial characterization for quivers that are tight

with their canonical weight δQ.

Proposition 3.32 (i) (Q, δQ) is tight if and only if (Q′, δQ′) is tight for every maximal

prime subquiver Q′ of Q.

(ii) For a connected quiver Q the pair (Q, δQ) is tight if and only if there is no partition

Q0 = H
∐
H ′, with ∅ 6= H ( Q0, such that there is at most one arrow from H to H ′

and there is at most one arrow from H ′ to H.

Proof. (i) follows immediately from Theorem 3.13. For (ii) first note that for any H ⊆ Q0

we have that

δQ(H) = #{a ∈ Q1 | a+ ∈ H, a− ∈ Q0 \H} −#{a ∈ Q1 | a− ∈ H, a+ ∈ Q0 \H}.

Now assume that there is a partition of Q0 as in the statement. If there is an arrow a from

H ′ to H and no arrows from H to H ′ then x(a) = 1 for all x ∈ ∇(Q, θ) ∩ ZQ1 , hence a

is contractible. If there is an arrow a from H ′ to H and an arrow a′ from H to H ′ then

we have θ(H) = θ(H ′) = 0 and it follows that x(a) = x(a′) for all x ∈ ∇(Q, θ) ∩ ZQ1 ,

which again implies that both a and a′ are contractible. For the other direction, if (Q, δQ)

is not tight then - as it has been explained in Remark 3.3 - it follows from the results in

[4] that for some arrow a the set Q1 \ {a} is not θ-polystable. If Q \ {a} is disconnected

then its connected components give us a partition of Q0 as in the Proposition. If Q\{a} is

connected then it follows from Proposition 2.17 that there is a set of vertices ∅ 6= H ( Q0

such that H is (Q1 \ {a})-successor closed and δQ(H) ≤ 0. It follows that no arrow other

than a goes from H to Q0 \H and there is at most one arrow going from Q0 \H to H. �
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Corollary 3.33 Let Q ∈ Rd be such that the skeleton S(Q) is 3-edge-connected (i.e. it

remains connected after removing any two of the edges), then (Q, δQ) is tight.

Proof. The case when Q does not contain valency 2 sinks is clear from Proposition 3.32.

Now assume that Q contains some valency 2 sinks and there are H,H ′ ⊆ Q0 as in Propo-

sition 3.32. Clearly every valency 2 sink lies on the same side of the partition H
∐
H ′ as

at least one of its neighbours, otherwise there would be at least 2 arrows going from H ′

to H or H to H ′. Now pick such a neighbour for every valency 2 sink and contract the

arrows between them to obtain a new quiver Q1 ∈ Rd that has the same skeleton as Q,

and denote by H1, H ′1 the partition of Q1
0 we obtain by contracting H and H ′. Since the

number of arrows running between H and H ′ is the same as between H1 and H ′1 we see

that the skeleton of Q1 can not be 3-edge-connected, a contradiction. �

Remark 3.34 (i) Since every quiver polytope can be realized by a tight pair, we see that

to obtain a complete (but generally redundant) list of reflexive polytopes up to dimension

d it is satisfactory to list prime quivers without oriented cycles that are tight with their

canonical weights.

(ii) In dimension 1 the 2-Kronecker quiver is the only quiver that is tight under its

canonical weight.

(iii) In dimension 2 it is easy to verify that all the four quivers without oriented cycles

in R2 are tight with their canonical weights, and the resulting reflexive polytopes are

pairwise non-isomorphic. Taking into account the product of the single one dimensional

reflexive polytope with itself, we see that there are a total of 5 reflexive quiver polytopes

in dimension 2.

(iv) Comparing Proposition 3.24 with Section 3.3 in [3] we conclude that for each

isomorphism class of 2-dimensional toric quiver varieties there is a quiver Q such that

M(Q, δQ) belongs to the given isomorphism class, in particular in dimension 2 every pro-

jective toric quiver variety is Gorenstein Fano. This is explained by the following two facts:

(1) in dimension 2, a complete fan is determined by the set of rays; (2) if (Q, θ) is tight,

then (Q, δQ) is tight. Now (1) and (2) imply that if (Q, θ) is tight and χ(Q) = 2, then

M(Q, θ) ∼=M(Q, δQ).

(v) The above does not hold in dimension three or higher. Consider for example the
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quiver-weight pairs:

0

3

−3 1

1

−2

The weight on the left is the canonical weight δQ for this quiver, and it is easy to check

that (Q, δQ) is tight and M(Q, δQ) is a Gorenstein Fano variety with one singular point.

The weight on the right is also tight for this quiver, however it gives a smooth moduli space

which can not be isomorphic toM(Q, δQ), consequently it also can not be Gorenstein Fano

since the rays in its fan are the same as those in the fan of M(Q, δQ).

The following proposition reduces the number of cases that have to be considered for

finding all reflexive quiver polytopes in a given dimension:

Proposition 3.35 (i) For d ≥ 2 let Q ∈ Rd be a quiver without oriented cycles. Then

Q can always be obtained from its skeleton S(Q) by choosing an acyclic orientation

on the edges and then adding some valency 2 sinks.

(ii) For d ≥ 2 let Q ∈ Rd be a quiver such that S(Q) is not 3-edge-connected. Then

there is a quiver Q′ ∈ Rd such that S(Q′) is 3-edge-connected and ∇(Q′, δQ′) is

integral-affinely equivalent to ∇(Q, δQ)

Proof. For (i) first let us note that the statement is not immediately obvious from the

definition, since it can easily happen that a cyclic orientation on the edges of a skeleton

becomes acyclic after adding some (for example all) valency 2 sinks to the arrows. The case

when Q contains no valency 2 sinks is trivial. Otherwise pick a valency 2 sink v in Q0 and

denote by w1 and w2 its neighbours. If there were directed paths going both ways between

w1 and w2 in Q, then Q would contain an oriented cycle, so without loss of generality, we

can assume that there is no directed path going from w1 to w2. Now remove v and the

arrows incident to it from Q and add an arrow from w2 to w1 to obtain a new quiver Q′.

Q′ contains no oriented cycles, has the same skeleton as Q and one less valency 2 vertex.

Now (i) follows by induction on the number of valency 2 vertices.

We prove (ii) by induction on the number of edges in the skeleton of Q. First note

that for each d ≥ 2 the skeleton with the smallest number of edges has 2 vertices and

d + 1 edges running between them and hence it is 3-edge-connected. Now let Q be as in

the proposition. If (Q, δQ) is not tight then we are done after tightening it and applying
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the induction hypothesis. Let us now assume that (Q, δQ) is tight. Since S(Q) is not

3-edge-connected, one can easily verify that there is a partition H
∐
H ′ of the vertices of

Q such that there are at most two arrows running between H and H ′. Since (Q, δQ) is

tight, it follows from Proposition 3.32 that there are precisely two arrows between H and

H ′ and that these arrows need to go the same way, say from H to H ′. Let us denote these

arrows by a1 and a2. If one of a+
1 and a+

2 is a valency 2 sink then by moving this sink from

H ′ to H and applying Proposition 3.32 we see that (Q, δQ) can not be tight, contradicting

our assumption. Now let Q′ be the quiver we get by removing a1 and adding a valency

2 sink v with arrows pointing to v from the endpoints of a1 and Q′′ be the quiver we get

after contracting the arrow a2 in Q′. Let us denote by b the arrow incident to v in Q′

that is oriented reversely to a1. Now by applying the same argument as in the proof of

Proposition 3.32, we see that for all x ∈ ∇(Q′, δQ′) we have that x(a2) = x(b), hence both

a2 and b are contractible in ∇(Q′, δQ′). By contracting b in ∇(Q′, δQ′) we obtain ∇(Q, δQ)

and by contracting a2 we obtain ∇(Q′′, δQ′′), hence ∇(Q, δQ) is integral-affinely equivalent

to ∇(Q′′, δQ′′). Moreover since a+
1 was not a valency 2 sink we have that Q′′ ∈ Rd, and

S(Q′′) has one less edge than S(Q) and we are done by induction.

�

Corollary 3.36 For d ≥ 2 every reflexive quiver polytope in dimension d is integral-

affinely equivalent to ∇(Q, δQ) for a quiver Q that can be obtained by choosing a 3-edge-

connected skeleton from Ld, endowing its arrows with an acyclic orientation and then

replacing some (possibly none) of the arrows with valency 2 sinks.

Corollary 3.36 provides us with a method for obtaining a complete list of reflexive

polytopes in a given dimension, however in general it is difficult to eliminate from this

list the polytopes that appear multiple times. The following proposition provides a useful

invariant for this purpose.

Proposition 3.37 (i) Let Q be a connected quiver and θ a weight such that (Q, θ) is

tight, and let a1, a2 ∈ Q1 be distinct arrows of Q. Then the facets of ∇(Q, θ) corre-

sponding to a1 and a2 are parallel if and only if Q \ {a1, a2} is disconnected.

(ii) Let Q ∈ Rd be a quiver such that S(Q) is 3-edge-connected, and let a1, a2 ∈ Q1

be distinct arrows of Q. Then the facets of ∇(Q, θ) corresponding to a1 and a2 are

parallel if and only if a1 and a2 are incident to the same valency 2 sink.
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(iii) Let Q1, Q2 ∈ Rd be quivers such that S(Q1) and S(Q2) are 3-edge-connected. If

∇(Q1, δQ1) is integral-affinely equivalent to ∇(Q2, δQ2)), then Q1 and Q2 have the

same number of valency 2 sinks and S(Q1) and S(Q2) have the same number of

edges.

Proof. For (i) recall from Corollary 3.6 that when Q is tight and connected we have

dim(∇(Q, θ)) = χ(Q) = |Q1| − |Q0| − 1 and hence

AffSpan(∇(Q, θ)) = {x ∈ RQ1 | ∀v ∈ Q0 : θ(v) =
∑
a+=v

x(a)−
∑
a−=v

x(a)}.

Recall that when (Q, θ) is tight, MQ
R is the linear subspace parallel to AffSpan∇(Q, θ).

Now clearly the facets corresponding to some a1 and a2 are parallel if and only if

MQ
R ∩ {x ∈ RQ1 | x(a1) = 0} = MQ

R ∩ {x ∈ RQ1 | x(a2) = 0}.

It follows from Proposition 2.12 that the support of any element in MQ
R is an undirected

cycle of Q. If Q\{a1, a2} is disconnected then there is no undirected cycle in Q containing

precisely one of them, hence from the above it follows that the corresponding facets are

parallel. For the other direction if Q \ {a1, a2} is connected then there is a spanning tree

T ⊆ Q1 \ {a1, a2} of Q. Recall the definition of eaF for a spanning forest F from the

discussion preceding Proposition 2.12. Now ea1T ∈ MQ
R ∩ {x ∈ RQ1 | x(a2) = 0} but

ea1T /∈ {x ∈ RQ1 | x(a1) = 0} hence the facets corresponding to a1 and a2 are not parallel.

For (ii) we can argue the same way as in the proof of Corollary 3.33 to see that Q \
{a1, a2} is disconnected if and only if a1 and a2 are incident to the same valency 2 sink,

and then comparing with (i) the statement follows.

For (iii) note that the number of parallel pairs of facets is invariant under integral-affine

equivalence, hence the first part of the statement follows immediately from (ii) and the

second part from the fact that the number of edges of S(Q) and the number of valency 2

sinks determine the number of arrows of Q, which in turn equals the number of facets of

∇(Q, θ). �

The following proposition is easy to verify:

Proposition 3.38 Every quiver without oriented cycles in R3 that has a 3-edge-connected

skeleton and contains no valency 2 sinks is isomorphic to one of the following, or the
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opposite quiver of QIII in this list:

QIIQI QIII QIV

Note that the opposite quiver of QIII need not to be considered, since it yields the

same quiver polytopes as QIII . We proceeded to compile a list of pairwise non-isomorphic

quivers one can obtain by adding sinks to the quivers in Proposition 3.38, and excluded

those cases that can be obtained from ones that we had already listed by a series of anti-

isomorphisms (i.e. reversing all arrows), and reflections (i.e. reversing arrows on a valency

2 sink or source) as in Proposition 3.9. We calculated the lattice points of the quiver

polytopes we obtain when considering quivers from this list with their canonical weights.

This essentially comes down to solving a set of integer inequalities for each of QI , QII , QIII

and QIV , and then removing a subset of the solutions depending on the valency 2 sinks

added, as illustrated by the following example.

Example 3.39 Label the edges of QII as in the picture below:

QII

d

a

eb c

By definition of the quiver polytope ∇(QII , δQII ), we have that m ∈ ∇(QII , δQII ) ∩ ZQII
1

if and only if the entries of m are non-negative and satisfy m(b) + m(c) + m(e) = 3 and

m(a) + m(d) − m(c) = 1. Taking a, b, c as free coordinates in AffSpan(∇(QII , δQII )), to

list the lattice points of ∇(QII , δQII ), we have to find the integer solutions for the set of

inequalities: m(a),m(b),m(c) ≥ 0, m(b)+m(c) ≤ 3, m(a) ≤ 1+m(c). One can check easily

that there are 30 solutions altogether, giving us the number of lattice points in∇(QII , δQII ).

Recall from Corollary 3.33 that QII is tight with its canonical weight hence each arrow

corresponds to a facet and these are given by the equations x(a) = 0, x(b) = 0, x(c) = 0,

x(b) + x(c) = 3 and x(a)− x(c) = 1. One can obtain the list of vertices of ∇(QII , δQII ) by

considering that a lattice point is a vertex if and only if it lies on at least 3 facets. Writing m
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as (m(a),m(b),m(c)) the 6 vertices are (0, 0, 0), (0, 3, 0), (0, 0, 3), (1, 3, 0), (1, 0, 0), (4, 0, 3).

Now consider the quiver QIIa we obtain by placing a sink on the arrow a of QII . By the

same argument as in the proof of Proposition 2.21 one sees that ∇(QIIa, δQIIa) is integral

affinely equivalent to ∇(QII , δQII ) ∩ {x(a) ≤ 2}. One checks easily that ∇(QII , δQII ) has

4 lattice points satisfying m(a) ≥ 3 (in particular these are (3, 2, 0), (3, 2, 1), (3, 3, 0) and

(4, 3, 0)), hence ∇(QIIa, δQIIa) has 26 lattice points. The equations defining the facets of

∇(QII , δQII ) define facets of ∇(QII , δQII ) ∩ {x(a) ≤ 2} as well, and it has one more facet

given by the equation x(a) = 2. Again considering that a vertex needs to lie on at least 3

facet we obtain that ∇(QII , δQII ) ∩ {x(a) ≤ 2} has 8 vertices:

(0, 0, 0), (0, 3, 0), (0, 0, 3), (1, 3, 0), (1, 0, 0), (2, 0, 1), (2, 2, 1), (2, 0, 3).

Note that the second task is relatively easy since adding a valency 2 sink is the same

as removing the lattice points whose corresponding coordinate is strictly greater than 2

(cf. the argument in the proof of Proposition 2.21). Surprisingly the resulting polytopes

turned out to be pairwise non-isomorphic.

In each case we recorded the following invariants: the number of valency 2 sinks of

the quiver, the number of lattice points, the number of faces, the number of vertices and

smooth vertices of the polytope. The results of these calculations are summarized in the

tables of Appendix A. Luckily these invariants are sufficient to separate each but one of the

cases. For the remaining one pair of polytopes (with the notation in the Appendix: QIV

with valency 2 sinks on the arrows ”a, b” in the first case and ”e, f” in the second case)

we showed that they are non-isomorphic by counting the lattice points on their facets. We

concluded that there are 48 non-isomorphic reflexive polytopes in dimension 3 that can

be obtained from prime quivers that are tight with their canonical weight. By Theorem

3.13 none of these 48 are products of lower dimensional polytopes. Moreover there are 5

more reflexive quiver polytopes that are obtained as products of lower dimensional quiver

polytopes. Hence we obtained that there are a total of 53 reflexive quiver polytopes in

dimension 3.
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3.5 Characterizing smooth quiver moduli spaces

3.5.1 Forbidden descendants

The aim of this section is to give a characterization of the triples (Q,α, θ) which yield

smooth or locally complete intersection moduli spaces M(Q,α, θ) via certain ”forbidden

descendants”, which when specialized to the toric case will yield a theorem in the flavour of

characterizing classes of graphs in terms of not containing certain forbidden minors. Note

that by a complete intersection we always mean an ideal theoretic complete intersection.

We begin by showing that removing arrows from a quiver preserves the properties of

being smooth or a complete intersection (special cases of the statement for the affine variety

M(Q,α, 0) were stated in [6] and [7] without a complete proof). Recall that an injective

morphism of algebras ι : R ↪→ S is called an algebra retract if there is a surjective morphism

ϕ : S � R such that ϕ ◦ ι = idR. The morphism ϕ is called the retraction map. When R

and S are both graded and the morphisms ι, ϕ are graded morphisms we call ι : R ↪→ S a

graded algebra retract..

We obtain Proposition 3.40 by applying the results from [19] to the graded case. Note

that by complete intersection we always mean an ideal theoretic complete intersection.

Recall that for the graded algebra S the points of the scheme Proj S are the homogeneous

prime ideals in S that do not contain the irrelevant ideal S+, and the stalk at the point

p ∈ Proj S is the homogeneous localization S(p) defined as the subring of degree zero

elements in the localized ring T−1S, where T consists of the homogeneous elements that

are not in p.

Proposition 3.40 Let ι : R ↪→ S be a graded algebra retract. Then if the variety Proj S

is smooth (resp. locally a complete intersection) then Proj R is also smooth (resp. locally

a complete intersection).

Proof. Let ϕ denote the retraction morphism S � R. We recall from Proposition 2.10 of

[19] that for any prime ideal p ∈ Spec(R) and q = ϕ−1(p) ∈ Spec(S) we have a natural

algebra retract of the localized rings Rp ↪→ Sq. Since ι, ϕ preserve the grading if p is a

homogeneous prime ideal of R then q = ϕ−1(p) is a homogeneous prime ideal of S and

there is a natural algebra retract of the homogeneous localizations R(p) ↪→ S(q), moreover

if p does not contain the irrelevant ideal of R then q does not contain the irrelevant ideal of

S. Now the proposition follows from Theorem 3.2 of [19] which asserts that every algebra
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retract of a regular (resp. locally complete intersection) ring is also a regular (resp. locally

complete intersection) ring. �

Proposition 3.41 For any quiver Q′ obtained from Q by removing an arrow a ∈ Q1, we

have

(i) If M(Q,α, θ) is smooth, then M(Q′, α, θ) is also smooth (or empty).

(ii) If M(Q,α, θ) is locally a complete intersection, then M(Q′, α, θ) is also locally a

complete intersection (or empty).

(iii) If the affine algebraic varietyM(Q,α, 0) is a complete intersection, thenM(Q′, α, 0)

is also a complete intersection.

Proof. View Rep(Q′, α) as a direct summand of Rep(Q,α) in the obvious way, and

denote by ι the algebra retract O(Rep(Q′, α)) ↪→ O(Rep(Q,α)) induced by the pro-

jection Rep(Q,α) → Rep(Q′, α), and by ϕ the corresponding retraction map induced

by the embedding Rep(Q′, α) ↪→ Rep(Q,α). Since both ι and ϕ are GL(α) equiv-

ariant for any weight θ it follows that that ι(O(Rep(Q′, α))nθ) ⊆ O(Rep(Q,α))nθ and

ϕ(O(Rep(Q,α))nθ) ⊆ O(Rep(Q′, α))nθ, and hence we have the graded algebra retract

∞⊕
n=0

O(Rep(Q′, α))nθ ↪→
∞⊕
n=0

O(Rep(Q,α))nθ.

Now (i) and (ii) follow from Proposition 3.40, and (iii) follows from Theorem 3.2 of [19]

and that as a special case of the above the ring O(Rep(Q′, α))0 = O(Rep(Q′, α))GL(α) is a

retraction of the ring O(Rep(Q,α))0 = O(Rep(Q,α))GL(α).

�

Taking into account the results we recalled in Section 2.3 we have obtained three tools

to reduce the structure of a quiver while preserving the properties of being smooth or a

complete intersection: constructing local quiver settings, applying the reduction steps RI-

III and taking subquivers (note that vertices without arrows can be removed). We will say

that the quiver setting (Q′, α′) is a descendant of the quiver setting (Q,α) if (Q′, α′) can

be obtained from (Q,α) by repeteadly taking subquivers, applying RI-III or constructing

local quivers with the 0 weight. We will also call (Q′, α′) a descendant of the triple (Q,α, θ)

if it is a descendant of a local quiver setting (Qξ, αξ) for some ξ ∈ M(Q,α, θ). Clearly

being a descendant is a partial ordering on the set of quiver settings, hence local properties
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that are preserved by all of the reduction methods can be characterized by some list of

forbidden descendants (for example take the list that contains every quiver setting without

the property). The surprising fact however is that in the case of the property of being

smooth taking a single forbidden descendant is enough. We note that certain elements of

the proof of Lemma 3.42 could be recovered from the proof of the main theorem in [7].

Lemma 3.42 Let Q be a strongly connected quiver on at least two vertices and α 6=
(1, . . . , 1) a genuine dimension vector. Let w ∈ Q0 be a vertex on which the value of

α is maximal. If none of the reduction steps RI-III can be applied to (Q,α) then there

exists a simple representation of Q with dimension vector α − εw, moreover we have

〈α− εw, εw〉Q ≤ −2 and 〈εw, α− εw〉Q ≤ −2.

Proof. By the assumption that RII can not be applied to (Q,α), we have that there are

no loops on vertices of dimension 1. Moreover the assumption that RI can not be applied

to (Q,α) implies that for a vertex v without loops we have 〈α, εv〉Q < 0 and 〈εv, α〉Q < 0,

and for vertices with loops the same inequalities follow from the assumption that Q is

strongly connected and |Q0| ≥ 2. In particular Q is not a cycle, otherwise we would have

〈α, εw〉Q ≥ 0 by the maximality of α(w). Thus it follows from Theorem 2.6 that a simple

representation of Q with dimension vector α−εw exists, if the inequalities 〈α−εw, εv〉Q ≤ 0

and 〈εv, α− εw〉Q ≤ 0 hold for all v ∈ Q0

By the maximality of α(w) we have

〈α, εv〉Q ≤ α(v) + α(w)〈εw, εv〉Q ≤ α(w)(1 + 〈εw, εv〉Q).

Now the inequality

〈α− εw, εv〉Q = 〈α, εv〉Q − 〈εw, εv〉Q ≤ 0

follows from 〈α, εv〉Q < 0 when 〈εw, εv〉Q ≥ −1 and from 〈α, εv〉Q ≤ α(w)(1 + 〈εw, εv〉Q)

when 〈εw, εv〉Q < −1. The inequality 〈εv, α− εw〉Q ≤ 0 can be derived similarly.

Moreover if 〈εw, εw〉Q = 1 then 〈α− εw, εw〉Q = 〈α, εw〉Q−〈εw, εw〉Q ≤ −2. Assume that

〈εw, εw〉Q ≤ 0. We have 〈α − εw, εw〉Q =
∑

v 6=w α(v)〈εv, εw〉Q + (α(w) − 1)〈εw, εw〉Q. For

v 6= w we have 〈εv, εw〉Q ≤ 0 and since Q is strongly connected there is strict inequality

for at least one v. Hence 〈α − εw, εw〉Q ≥ −1 would imply that
∑

v 6=w α(v)〈εv, εw〉Q = −1

and 〈εw, εw〉Q = 0. It follows that w has a loop and the single arrow pointing to w departs

from a vertex of dimension 1. Hence we are in the situation of Lemma 2.10 and RIII can

be applied contradicting our assumptions. We obtained that 〈α − εw, εw〉Q ≤ −2, and

〈εw, α− εw〉Q ≤ −2 follows similarly.
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Theorem 3.43 M(Q,α, θ) is smooth if and only if (Q̂, α̂) is not a descendant of (Q,α, θ),

where Q̂ is the quiver

and α̂ takes value 1 on both vertices.

Proof. We will say that the quiver setting (Q,α) is smooth (resp. singular) if the moduli

space M(Q,α, 0) is smooth (resp. singular), moreover that the quiver setting (Q′, α′) is

a local quiver setting of (Q,α) if it can be obtained as a local quiver setting of (Q,α, 0).

By a non-trivial descendant of (Q,α) we simply mean one that is not (Q,α) itself. If

(Q,α, θ) has a descendant that is singular then by the discussion preceeding the theorem

M(Q,α, θ) is also singular. Now recall from Remark 2.7 that whenever ξ ∈ M(Q,α, θ)

is a singular point, the local quiver setting (Qξ, αξ) is singular at 0, hence it suffices to

prove that (Q̂, α̂) is a descendant of every singular quiver setting. Next note that for a

non trivial local-quiver setting (i.e. not the one at the 0 representation) (Q′, α′) of (Q,α)

we have
∑

v∈Q′0
α′(v) <

∑
v∈Q0

α(v) and the same holds when (Q′, α′) is obtained from

(Q,α) via the reduction step RI. Furthermore applying the reduction step RII or RIII

both decrease the number of loops in the quiver without increasing
∑

v∈Q0
α(v). Finally

taking non-trivial subquivers reduces the number of arrows or vertices of the quiver. It

follows that one can take non-trivial descendants only finitely many times before arriving

to a one vertex quiver with no arrows. Hence we are left to prove that every singular quiver

setting (Q,α) that is not (Q̂, α̂) has a non-trivial singular descendant.

It follows from Lemma 2.4 of [7] that if Q is not strongly connected then

M(Q,α, 0) ∼=
k∏
i=1

M(Qi, αi, 0),

where Q1...k are the strongly connected components of Q and the αi are restrictions of α.

Hence if Q is not strongly connected and (Q,α) is singular, then (Q,α) has a non-trivial

strongly connected descendant. We assume for the rest of the proof that Q is strongly

connected.
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First we treat the case α = (1, . . . , 1). Record that the reduction step RI can be applied

to a vertex without loops if and only if its in-degree or out-degree is 1, and the reduction

step RIII can never be applied in this case. So if Q contains a loop or a vertex with in or

out-degree 1 we can apply RI or RII to obtain a non-trivial singular descendant and we are

done. Let us assume then that there are no loops in Q and every vertex has in- and out-

degrees at least 2, which implies that Q has at least 2 vertices. Note that it follows from

Theorem 2.6 (or alternatively from Proposition 2.17) that there is a simple representation

with dimension vector (1, . . . , 1) if and only if Q is strongly connected.

Let us now assume that Q contains a cycle C such that C does not run through every

vertex of the quiver, and write W = {w1, . . . , wk} for the set of vertices that do not belong

to C. Let αC denote the dimension vector with α(w) = 0 for w ∈ W and α(v) = 1 for

v ∈ Q1 \W . Let RC be the representation of Q with dimension vector αC that takes values

1 on the arrows of C and 0 on the rest of the arrows. For each wi ∈ W set Rwi
to be

the representation with dimension vector εwi
that is 0 on every arrow. Now let R denote

the semisimple representation RC ⊕ (
⊕k

i=1Rwi
), and ξ the image of R in M(Q,α, 0). We

will show that the quiver setting (Qξ, αξ) is singular. To see this first observe that the

vertices of Qξ corresponding to Rwi
have the same in and out-degrees as wi in Q and are

not incident to loops, hence there is at most one vertex in Qξ on which RI and RII can be

applied.

Now we claim that any strongly-connected quiver setting on at least 2 vertices with

α = (1, . . . , 1) that has only one vertex on which RI or RII can be applied is singular.

Indeed if Q has exactly two vertices then if one has in and out-degrees of at least 2 then

so does the other and the claim follows from Theorem 2.11. For a quiver on 3 or more

vertices, that satisfies the condition in the claim, it is not difficult to see that if we apply

RI or RII the resulting quiver setting still has at most one vertex on which the reduction

steps can be applied, and hence the claim follows from induction.

We have proven that when Q has a cycle that is not incident to every vertex then

(Q, (1, . . . , 1)) has a non-trivial singular descendant and are left to deal with the case

when every cycle in Q runs through every vertex. It follows that Q is a quiver which we

can obtain from a single cycle by adding some (at least one) copies of each arrow. Now

repeteadly remove arrows from Q and apply RI whenever possible to see that it has a

(Q̂, α̂) descendant.

Now we turn to the case when α 6= (1, . . . , 1). Again we can assume that none of

RI-III can be applied to the quiver. If Q has only one vertex v and k loops then by
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Theorem 2.11 either α(v) = 2 and k ≥ 3 or α(v) ≥ 3 and k ≥ 2. By Theorem 2.6 we

can choose non-isomorphic simple representations R1, . . . , Rα(v) such that the dimension

vector of any of them is given by α(v) = 1. Now let ξ be the image of the semisimple

representation
⊕α(v)

i=1 Ri in in M(Q,α, 0). The local quiver setting (Qξ, αξ) has dimension

vector αξ = (1, . . . , 1). Moreover Qξ has α(v) vertices with k − 1 arrows going both ways

between any two distinct vertices. After removing loops (by RII) we see that each vertex

has in and out-degrees at least 2 hence by Theorem 2.11 (Qξ, αξ) is singular.

If Q has more than one vertex then we are in the situation of Lemma 3.42 and see

that for a vertex w on which α takes maximum value there is a simple representation R

with dimension vector α− εw. Set Rw to be a simple representation with dimension vector

εw, and ξ to be the image of the semisimple representation R ⊕ Rw in M(Q,α, 0). Now

(Qξ, αξ) has two vertices with dimension 1 and there is −〈α − εw, εw〉Q arrows running in

one direction and −〈εw, α− εw〉Q in the other, both of which are at least 2 by Lemma 3.42.

Hence (Qξ, αξ) is singular by Theorem 2.11. We have shown that (Q,α) has a non-trivial

singular descendant completing the proof. �

In Theorem 3.44 we use forbidden descendants to characterize triples (Q,α, θ) that

yield a complete intersection moduli space in the toric case α = (1, . . . , 1). For the affine

case the statement was proven by the author in [29], and the general case follows similarily

to Theorem 3.43 by considering a local quiver setting at a point where the moduli space

is not locally a complete intersection. The key idea for the proof in [29] uses a technique

which was developed in the author’s masters thesis (without the introduction of forbidden

descendants).

Theorem 3.44 For α = (1, . . . , 1), M(Q,α, θ) is locally a complete intersection if and

only if none of (Q̂1, α̂1) and (Q̂2, α̂2) is a descendant of (Q,α, θ), where Q̂1 and Q̂2 are the

quivers:

and the dimension vectors α̂1 and α̂2 take value 1 on every vertex.

3.5.2 Generic weights

A weight θ of a quiver setting (Q,α) is called generic if the θ-stable and θ-semistable α-

dimensional representations coincide. It is well known that in this case the moduli space
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M(Q,α, θ) is smooth. We will show that in the toric case for tight pairs (Q, θ) the reverse

implication also holds.

Lemma 3.45 If Q is a connected quiver and the pair (Q, θ) is tight then for any ∅ 6= V ⊂
Q0 with θ(V ) = 0 we have that there are at least two arrows from V to Q0 \ V and at least

two arrows from Q0 \ V to V .

Proof. Set Out(V ) = {a ∈ Q1 | a− ∈ V, a+ ∈ Q0\V } and In(V ) = {a ∈ Q1 | a+ ∈ V, a− ∈
Q0\V }. Without loss of generality we may assume that |Out(V )| ≥ |In(V )| and then since

Q is connected |Out(V )| ≥ 1. If In(V ) = ∅ then for any b ∈ Out(V ) and x ∈ ∇(Q, θ)

we have x(b) = 0, hence b is removable. If In(V ) = {a} and Out(V ) = {b1, . . . , bk} then

for any x ∈ ∇(Q, θ) we have x(a) =
∑k

i=1 x(bi). It follows that the face ∇(Q, θ)x(a)=0 is

contained in
⋂k
i=1∇(Q, θ)x(bi)=0, hence by (i) of Corollary 3.6 (Q, θ) can not be tight. �

Proposition 3.46 Let Q be a connected quiver. If (Q, θ) is tight the following are equiv-

alent:

(i) θ is a generic weight.

(ii) M(Q, θ) is smooth.

(iii) For any m ∈ ∇(Q, θ) the quiver with vertices Q0 and arrows supp(m) is connected.

Moreover if the tightness of (Q, θ) is not assumed (i) and (iii) are still equivalent and they

both imply (ii).

Proof. We first show the implications that hold without the assumption that (Q, θ) is tight.

If there is m ∈ ∇(Q, θ) such that the quiver with vertices Q0 and arrows supp(m) is not

connected, then pick a representation R with supp(R) = supp(m). R is θ-semistable and

so are its non-trivial subrepresentations that correspond to the connected components of

supp(m), hence R can not be θ-stable, proving that (i) implies (iii). If θ is not generic

then there is a representation R that is θ-semistable but not stable. By θ-semistability of

R there is a lattice point m ∈ ∇(Q, θ) with supp(m) ⊆ supp(R). Since R is not θ-stable

by Proposition 2.17 there is a supp(R)-successor closed set of vertices ∅ 6= V ⊂ Q0 that

satisfies θ(V ) = 0. Then V is also supp(m)-successor closed, hence by θ(V ) = 0 the value

of m has to be 0 on every arrow running between Q1 \ V and V , and it follows that V is

a connected component of the quiver with vertices Q0 and arrows supp(m), proving that

(iii) implies (i). Finally from (iii) it follows that the quivers Qv in Proposition 3.26 have
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only 1 vertex and hence the open sets Uv in the affine open cover of M(Q, θ) are affine

spaces, proving that (iii) implies (ii).

Let us turn to the case when (Q, θ) is tight and show that (ii) implies (iii). Assume

for a contradiction that (iii) does not hold. Since the supports of the vertices are minimal

sets amongst the supports of the lattice points of m ∈ ∇(Q, θ) we can assume that there

is a vertex v ∈ ∇(Q, θ) such that the quiver with vertices Q0 and arrows supp(v) have

connected components V1, . . . , Vk for k > 0. Then we have θ(Vi) = 0 and the vertices of Qv

are obtained by contracting each of the Vi into a single vertex. Since M(Q, θ) is smooth

Uv ∼= M(Qv, 0) is also smooth. Since Qv has at least 2 vertices by Theorem 2.11 we see

that the reduction step RI can be applied to it after possible loops have been removed.

Hence there is a vertex in Qv, corresponding to some connected component Vi, such that

its in or out-degree is at most 1 (not counting loops). Note that the number of arrows

leaving (resp. arriving to) the vertex corresponding to Vi in Qv are the same as the number

of arrows running from Vi to Q0 \Vi (resp. from Q0 \Vi to Vi) in Q. Hence by Lemma 3.45

we see that (Q, θ) can not be tight.

�
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Chapter 4

Toric Ideals of Quivers

4.1 Presentations of semigroup algebras

The aim of this chapter is to study the toric ideals of affine and projective toric quiver

varieties. Recall from Section 2.1 that both cases come down to studying relations amongst

the generators of certain semigroup algebras, that are obtained from subsemigroups of ZQ1 .

We begin by formulating a statement (Lemma 4.2; a version of it was introduced in [29])

in a slightly more general situation than what is needed here. Let S be any finitely

generated commutative monoid (written additively) with non-zero generators s1, . . . , sd,

and denote by Z[S] the corresponding semigroup algebra over Z: its elements are formal

integral linear combinations of the symbols {xs | s ∈ S}, with multiplication given by

xs · xs′ = xs+s
′
. Write R := Z[t1, . . . , td] for the d-variable polynomial ring over the

integers, and φ : R → Z[S] the ring surjection ti 7→ xsi . Set I := ker(φ). It is well known

and easy to see that

I = ker(φ) = SpanZ{ta − tb |
d∑
i=1

aisi =
d∑
j=1

bjsj ∈ S} (4.1)

where for a = (a1, . . . , ad) ∈ Nd
0 we write ta = ta11 . . . tadd .

Introduce a binary relation on the set of monomials in R: we write ta ∼ tb if ta − tb ∈
R+I, where R+ is the ideal in R consisting of the polynomials with zero constant term.

Obviously ∼ is an equivalence relation. Let Λ be a complete set of representatives of the

equivalence classes. We have Λ =
∐

s∈S Λs, where for s ∈ S set Λs := {ta ∈ Λ |
∑
aisi = s}.
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For the s ∈ S with |Λs| > 1, set Gs := {ta1 − tai | i = 2, . . . , p}, where ta1 , . . . , tap is an

arbitrarily chosen ordering of the elements of Λs.

Lemma 4.1 (i)
∐

s∈S:|Λs|>1 Gs is a minimal generating system of the ideal I, in particular,

I is generated by
∑

s∈S(|Λs| − 1) elements.

(ii) Suppose that S =
∐∞

k=0 Sk is graded (i.e. Sk + Sl ⊆ Sk+l) and S0 = {0} (i.e. the

generators s1, . . . , sd have positive degree). Then
∐

s∈S:|Λs|>1 Gs is a minimal homogeneous

generating system of the ideal I, where the grading on Z[t1, . . . , td] is defined by setting the

degree of ti to be equal to the degree of si.

Proof. It is easy to see that a Z-module direct complement of R+I in R is
∑

ta∈Λ Zta. Thus

the statement follows by the graded Nakayama Lemma. �

Next for a cancellative commutative monoid S we give a more explicit description of

the relation ∼ (a special case occurs in [29]). For some elements s, v ∈ S we say that s

divides v and write s | v if there exists an element w ∈ S with v = s + w. For any s ∈ S
introduce a binary relation ∼s on the subset of {s1, . . . , sd} consisting of the generators si

with si | s as follows:

si ∼s sj if i = j or there exist u1, . . . , uk ∈ {s1, . . . , sd} (4.2)

with u1 = si, uk = sj, ul + ul+1 | s for l = 1, . . . , k − 1.

Obviously ∼s is an equivalence relation, and

s = si1 + · · ·+ sir implies si1 ∼s si2 ∼s · · · ∼s sir . (4.3)

Moreover, si ∼s sj implies si ∼t sj for any s | t ∈ S.

Lemma 4.2 Let S be a cancellative commutative monoid generated by s1, . . . , sd. Take

ta − tb ∈ I, so s :=
∑d

i=1 aisi =
∑d

j=1 bjsj ∈ S. Then the following are equivalent:

(i) ta − tb ∈ R+I;

(ii) For some ti | ta and tj | tb we have si ∼s sj;

(iii) For all ti | ta and tj | tb we have si ∼s sj.
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Proof. (ii) and (iii) are equivalent by (4.3).

To show that (ii) implies (i) assume that for some ti | ta and tj | tb we have si ∼s sj. If

si = sj, then ta and tb have a common variable, say t1, so ta = t1t
a′ and tb = t1t

b′ for some

a′, b′ ∈ Nd
0. We have

xs1φ(ta
′ − tb′) = φ(t1(ta

′ − tb′)) = φ(ta − tb) = 0

hence xs1φ(ta
′
) = xs1φ(tb

′
). Since S is cancellative, we conclude φ(ta

′
) = φ(tb

′
), thus

ta
′ − tb′ ∈ I, implying in turn that ta − tb = t1(ta

′ − tb′) ∈ R+I. If si 6= sj, then there exist

z1, . . . , zk ∈ {t1, . . . , td} such that ul ∈ S with φ(zl) = xul satisfy (4.2). Then there exist

monomials (possibly empty) w0, . . . , wk in the variables t1, . . . ., td such that

z1w0 = ta, φ(zlzl+1wl) = xs (l = 1, . . . , k − 1), zkwk = tb.

It follows that

ta − tb = z1(w0 − z2w1) +
k−1∑
l=2

zl(zl−1wl−1 − zl+1wl) + zk(zk−1wk−1 − wk). (4.4)

Note that φ(z1w0) = xs = φ(z1z2w1), hence φ(z1)φ(w0) = φ(z1)φ(z2w1). Since S is can-

cellative, we conclude that φ(w0) = φ(z2w1), so w0 − z2w1 ∈ I, implying in turn that

z1(w0 − z2w1) ∈ R+I. Similarly all the other summands on the right hand side of (4.4)

belong to R+I, hence ta − tb ∈ R+I.

Finally we show that (i) implies (ii). Suppose that ta − tb ∈ R+I. By (4.1) we have

ta − tb =
k∑
l=1

til(t
al − tbl) where tal − tbl ∈ I and il ∈ {1, . . . , d} (4.5)

After a possible renumbering and cancellations we may assume that

ti1t
a1 = ta, tilt

bl = til+1
tal+1 for l = 1, . . . , k − 1, and tikt

bk = tb. (4.6)

Observe that if til = til+1
for some l ∈ {1, . . . , k − 1}, then necessarily tbl = tal+1 , hence

til(t
al − tbl) + til+1

(tal+1 − tbl+1) = til(t
al − tbl+1). Thus in (4.5) we may replace the sum of

the lth and (l + 1)st terms by a single summand til(t
al − tbl+1). In other words, we may

achieve that in (4.5) we have til 6= til+1
for each l = 1, . . . , k − 1, in addition to (4.6). If

k = 1, then ta and tb have a common variable and (ii) obviously holds. From now on
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assume that k ≥ 2. From tilt
bl = til+1

tal+1 and the fact that til and til+1
are different

variables in Z[t1, . . . , td] we deduce that tbl = til+1
tcl for some cl ∈ Nd

0, implying that

xs = φ(tilt
bl) = φ(tiltil+1

tcl) = φ(til)φ(til+1
)φ(tcl). Thus ul := sil satisfy (4.2) and hence

si1 ∼s sik . �

Corollary 4.3 Suppose that S =
∐∞

k=0 Sk is a finitely generated graded cancellative com-

mutative monoid generated by S1 = {s1, . . . , sd}. The kernel of φ : Z[t1, . . . , td] → Z[S],

ti 7→ xsi is generated by homogeneous elements of degree at most r (with respect to the

standard grading on Z[t1, . . . , td]) if and only if for all k > r and s ∈ Sk, the elements in

S1 that divide s in the monoid S form a single equivalence class with respect to ∼s.

Proof. This is an immediate consequence of Lemma 4.1 and Lemma 4.2. �

Remark 4.4 For polytopal semigroup algebras a different proof of Corollary 4.3 can be

derived from Theorem 12.12 and Corollary 12.13 in [44].

4.2 Toric ideals in the affine case

Recall from Section 2.4 that when we set θ = 0 the toric quiver varietyM(Q, 0) is an affine

variety with coordinate ring C[∇(Q, 0)∩ZQ1 ]. We will denote the semigroup ∇(Q, 0)∩ZQ1

by S(Q). As we pointed out in Section 2.4, denoting the (oriented) primitive cycles of Q

by C1, . . . , Cr the semigroup S(Q) is generated by the characteristic vectors εC1 , . . . , εCr .

Throughout this section ϕ will denote the map C[t1, . . . , tr]→ C[S(Q)] defined by ϕ(ti) =

tεCi , and we will denote the corresponding toric ideal ker(ϕ) by I0(Q).

We will denote by ≥ the usual partial ordering on RQ1 , i.e. for x1, x2 ∈ RQ1 we define

x1 ≥ x2 if and only x1(a) ≥ x2(a) for all a ∈ Q1. Note that in the monoid S(Q) we have

that m | n for some m,n if and only if m ≤ n. For a non-zero element s ∈ ∇(Q, 0) ∩ ZQ1

that is not a primitive cycle and a primitive cycle C with εC ≤ s we will say that C is

s-strong if s − εC is the characteristic vector of a primitive cycle and that C is s-weak

otherwise. We will denote by ∼s the equivalence relation from Lemma 4.2.

Lemma 4.5 For s ∈ S(Q) and s-weak primitive cycles C1, C2 ≤ s, we have εC1 ∼s εC2.

Proof. We prove by induction on |s| =
∑

a∈Q1
s(a). The statement is trivial when

|supp(s)| = 1, so we can assume that |supp(s)| ≥ 2. If supp(s) contains a loop L then the

characteristic vector εL is ∼s equivalent to every εC ≤ s, and the statement of the Lemma
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is clear. We assume for the rest of the proof that supp(s) does not contain a loop. For

distinct arrows a1, a2 ∈ supp(s) with a+
1 = a−2 , we will denote by Q(a1,a2) the quiver we get

from Q by adding a new arrow a12 with a−12 = a−1 and a+
12 = a+

2 , and identify the remaining

arrow set of Q(a1, a2) with that of Q. We will denote by s(a1,a2) the element of S(Q(a1,a2))

defined by s(a1,a2) = s − εa1 − εa2 + εa12 (where εa denotes the characteristic vector of a).

Clearly |s(a1,a2)| = |s|−1 so we can apply the induction hypothesis on s(a1,a2). Let µ denote

the map {m ∈ S(Q(a1,a2)) | m ≤ s(a1,a2)} → {m ∈ S(Q) | m ≤ s} that is defined by

setting µ(m) = m when m(a12) = 0 and µ(m) = m + εa1 + εa2 − εa12 when m(a12) = 1.

Clearly µ(s(a1,a2)) = s and m1 + m2 ≤ s(a1,a2) implies µ(m1) + µ(m2) ≤ s. Moreover for

an element m ∈ S(Q), m ≤ s we have m ∈ Im(µ) unless m(a1) = s(a1) and m(a2) = 0 or

m(a1) = 0 and m(a2) = s(a2). The preimages of characteristic vectors of primitive cycles

in Im(µ) are also characteristic vectors of primitive cycles.

Now we claim that if for primitive cycles C1, C2 of Q(a1,a2) we have εC1 ∼s(a1,a2) εC2

and µ(εC1), µ(εC2) are characteristic vectors of primitive cycles then µ(εC1) ∼s µ(εC2).

Indeed εC1 ∼s(a1,a2) εC2 implies that there is series of primitive cycles C ′1, . . . , C
′
k such that

C1 = C ′1, C2 = C ′k and εC′i + εC′i+1
≤ s(a1,a2) for all i = 1, . . . , k − 1. Now by the above

we have µ(εC′i) + µ(εC′i+1
) ≤ s for all i = 1, . . . , k − 1. Now we consider the sequence

µ(εC′1), . . . µ(εC′1) and replace each µ(εC′i) by a characteristic vector of a primitive cycle

contained in its support to obtain a sequence as in Lemma 4.2 for µ(εC1) and µ(εC2)

proving the claim.

We will say that the pair a1, a2 ∈ supp(s) is good for some s-weak primitive cycle

C of Q if εC = µ(ε′C) for an ∼s(a1,a2)-weak primitve cycle C ′. Now let l, k ≥ 3 and

C1, . . . , Cl, D1, . . . , Dk be primitive cycles in Q satisfying

s = εC1 + · · ·+ εCl
= εD1 + · · ·+ εDk

.

To prove the lemma we need to show that εCi
∼s εDj

for some i ∈ {1, . . . , l} and j ∈
{1, . . . , k}. By the claim proven in the previous paragraph if we can show that there is a

pair of arrows a1, a2 ∈ supp(s) with a+
1 = a−2 that is good for at least one of the C1,...,l and

one of the D1,...,k then we are done by induction. Suppose now that there is no such pair

of arrows. Since supp(s) contains no loops all of the primitive cycles listed contain at least

two arrows. A pair of arrows a1, a2 that are consecutive in some Ci will clearly be good

for all of the C1,...,l. Moreover there is at least one p ∈ {1, . . . , k} with εDp(a1) ≤ s(a1)

and εDp(a2) ≤ s(a2), implying that εDp ∈ Im(µ) (µ now denotes the map corresponding

to this particular a1, a2). Let D′p denote the primitive cycle of Q(a1,a2) with µ(εD′p) = εDp
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and εD′p(a12) = 0. If the pair a1, a2 is not good for Dp then D′p has to be a s(a1,a2)-strong

primitive cycle in Q(a1,a2). In other words s − εDp =
∑

i 6=pDi becomes the characteristic

vector of a primitive cycle after we replace a copy of a1 and a2 with a12. This can only

occur when k = 3 and s − εDp is the sum of the characteristic vectors of two primitive

cycles E1 and E2, such that a1 ∈ E1, a2 ∈ E2 and the only vertex contained in both E1

and E2 is a+
1 = a−2 . This implies that a−1 6= a+

2 and consequently that Ci has length at

least 3. Also observe that for each of the D1,...,k there are at most two pairs of consecutive

arrows a1, a2 such that εDp(a1) ≤ s(a1) and εDp(a2) ≤ s(a2) and D′p is strong in s(a1,a2). So

there are at most 6 pairs of such arrows satisfying these conditions for some of the D1,...,k.

We obtained that if one of the C1,...,l is of length 2 then its arrows will be good for one of

the D1,...,k, on the other hand if all of the C1,...,l are of at least length 3 then together they

contain at least 9 pairs of consecutive arrows, and by the above at least 3 of those will be

good for some of the D1,...,k as well. �

We note that in the next theorem by the degree of a monomial in C[t1, . . . , tr] we mean

the one that can be obtained from the standard grading deg(ti) = 1.

Theorem 4.6 Let Q be a quiver such that d := dim(M(Q, 0)) > 0. Then I0(Q) is

generated by binomials that are the difference of a monomial of degree 2 and a monomial

of degree at most d− 1.

Proof. From Lemma 4.2 and Lemma 4.5 we obtain that a generating set of binomials

can be given such that at least one monomial of each binomial is of degree 2. For the

bound on the degree of the other monomial first consider that up to dimension 2 the

only affine toric quiver varieties are the affine spaces. Suppose from now on that d ≥
3. Clearly it is sufficient to deal with the case when (Q, 0) is tight and Q is prime.

Suppose that εD1 + · · · + εDk
= εC1 + εC2 . Note that each Di has an arrow contained

in C1 but not in C2, and has an arrow contained in C2 but not in C1. It follows that

length(C1)+length(C2) ≥ 2k, implying that Q has at least k vertices. By Proposition 3.29

we conclude that d− 1 = χ(Q)− 1 ≥ |Q0| ≥ k. �

Remark 4.7 The quiver in Example 3.30 shows that the bound d − 1 on the degree in

Theorem 4.6 is sharp.
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4.3 Toric ideals in the projective case

Corollary 4.3 applies for the monoid S(Q, θ), where the grading is given by S(Q, θ)k =

∇(Q, kθ) ∩ ZQ1 . Recall that when Q contains no oriented cycles ∇(Q, θ) is a normal

polytope. We set the notation

F := C[tm | m ∈ ∇(Q, θ) ∩ ZQ1 ]

and A(Q, θ) = C[S(Q, θ)] and recall from Section 2.1 that toric ideal corresponding to

∇(Q, θ) is given by the kernel of the map:

ϕ : F → A(Q, θ), tm 7→ xm. (4.7)

The ideal ker(ϕ) is a homogeneous ideal in the polynomial ring F (endowed with the

standard grading) which we will denote by I(Q, θ).

The following statement is a special case of the main result (Theorem 2.1) of [46]:

Proposition 4.8 Let Q = K(n, n) be the complete bipartite quiver with n sources and n

sinks, with a single arrow from each source to each sink. Let θ be the weight with θ(v) = −1

for each source and θ(v) = 1 for each sink. Then the ideal I(Q, θ) is generated by elements

of degree at most 3.

For sake of completeness we present a proof. The argument below is based on the key

idea of [46], but we use a different language and obtain a very short derivation of the result.

For this quiver and weight generators of A(Q, θ) correspond to perfect matchings of the

underlying graph of K(n, n). Recall that a perfect matching of K(n, n) is a set of arrows

{a1, . . . , an} such that for each source v there is a unique i such that a−i = v and for each

sink w there is a unique j such that a+
j = w. Now ∇(Q, θ)∩ZQ1 in this case consists of the

characteristic functions of perfect matchings of K(n, n). By a near perfect matching we

mean an incomplete matching that covers all but 2 vertices (1 sink and 1 source). Abusing

language we shall freely identify a (near) perfect matching and its characteristic function

(an element of NQ1

0 ). First we show the following lemma:

Lemma 4.9 Let θ be the weight for Q = K(n, n) as above, and m1+· · ·+mk = q1+· · ·+qk
for some k ≥ 4 and mi, qj ∈ ∇(Q, θ) ∩ ZQ1. Furthermore let us assume that for some

0 ≤ l ≤ n − 2 there is a near perfect matching p such that p ≤ m1 + m2 and p contains l

arrows from q1. Then there is a j ≥ 3 and m′1,m
′
2,m

′
j ∈ ∇(Q, θ) ∩ ZQ1 and a near perfect
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matching p′ such that m1 +m2 +mj = m′1 +m′2 +m′j, p
′ ≤ m′1 +m′2 and p′ contains l+ 1

arrows from q1.

Proof. Let v1, . . . , vn be the sources and w1, . . . , wn the sinks of Q, and let us assume that

p covers all vertices but v1 and w1. Let a be the arrow incident to v1 in q1. If a is contained

in m1 + m2 then pick an arbitrary j ≥ 3, otherwise take j to be such that mj contains a.

We can obtain a near perfect matching p′ < m1 +m2 +mj that intersects q1 in l+1 arrows

in the following way: if a connects v1 and w1 we add a to p and remove one arrow from it

that was not contained in q1 (this is possible due to l ≤ n− 2); if a connects v1 and wi for

some i 6= 1 then we add a to p and remove the arrow from p which was incident to wi (this

arrow is not contained in q1). Set r := m1 + m2 + mj − p′ ∈ NQ1

0 , and denote by S the

subquiver of K(n, n) with S0 = Q0 and S1 = {c ∈ Q1 | r(c) 6= 0}. We have S0 = S−0
∐
S+

0

where S−0 denotes the set of sources and S+
0 denotes the set of sinks. For a vertex v ∈ S0 set

degr(v) :=
∑

v∈{c−,c+} r(c). We have that degr(v) = 3 for exactly one source and for exactly

one sink, and degr(v) = 2 for all the remaining vertices of S. Now let A be an arbitrary

subset of S−0 , and denote by B the subset of S+
0 consisting of the sinks that are connected

by an arrow in S to a vertex in A. We have the inequality
∑

v∈A degr(v) ≤
∑

w∈B degr(w).

Since on both sides of this inequality the summands are 2 or 3, and 3 can occur at most

once on each side, we conclude that |B| ≥ |A|. Applying the König-Hall Theorem (cf.

Theorem 16.7 in [41]) to S we conclude that it contains a perfect matching. Denote the

characteristic vector of this perfect matching by m′j. Take perfect matchings m′1 and m′2

of S with m1 + m2 + mj − m′j = m′1 + m′2 (note that m′1,m
′
2 exist by normality of the

polytope ∇(Q, θ), which in this case can be seen as an imediate consequence of the König-

Hall Theorem). By construction we have m1 + m2 + mj = m′1 + m′2 + m′j, p
′ ≤ m′1 + m′2,

and p′ has l + 1 common arrows with q1. �

Proof of Proposition 4.8 By Corollary 4.3 it is sufficient to show that if s = m1 + · · ·+mk =

q1 + · · · + qk where mi, qj ∈ ∇(Q, θ) ∩ ZQ1 and k ≥ 4, then the mi, qj all belong to the

same equivalence class with respect to ∼s. Note that since k ≥ 4, by (4.3) the elements

m′1,m
′
2,m

′
j from the statement of Lemma 4.9 belong to the same equivalence class with

respect to ∼s as m1, . . . ,mk. Hence repeatedly applying Lemma 4.9 we may assume that

there is a near perfect matching p ≤ m1 + m2 such that p and q1 have n − 1 common

arrows. The only arrow of q1 not belonging to p belongs to some mj, hence after a possible

renumbering of m3, . . . ,mk we may assume that q1 ≤ m1 + m2 + m3. It follows that

q1 ∼s m4, implying in turn by (4.3) that the mi, qj all belong to the same quivalence class
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with respect to ∼s. �

Now we are in position to state and prove the main result of this section (this was

stated in [34] as well, but was withdrawn later, see [35]):

Theorem 4.10 Let Q be a quiver with no oriented cycles, θ ∈ ZQ1 a weight such that

∇(Q, θ) is non-empty. Then the ideal I(Q, θ) is generated by elements of degree at most 3.

Proof. By Proposition 3.21 and the double quiver construction (cf. the proof of Theo-

rem 3.28) it is sufficient to deal with the case when Q is bipartite and ∇(Q, θ) is non-empty.

This implies that θ(v) ≤ 0 for each source vertex v and θ(w) ≥ 0 for each sink vertex w.

Note that if θ(v) = 0 for some vertex v ∈ Q0, then omitting v and the arrows adjacent to v

we get a quiver Q′ such that the lattice polytope ∇(Q, θ) is integral-affinely equivalent to

∇(Q′, θ|Q′0), hence we may assume that θ(v) 6= 0 for each v ∈ Q0. We shall apply induction

on
∑

v∈Q0
(|θ(v)| − 1).

The induction starts with the case when
∑

v∈Q0
(|θ(v)| − 1) = 0, in other words, θ(v) =

−1 for each source v and θ(w) = 1 for each sink w. This forces that the number of sources

equals to the number of sinks in Q. The case when Q is the complete bipartite quiver

K(n, n) having n sinks and n sources, and each source is connected to each sink by a single

arrow is covered by Proposition 4.8. Suppose next that Q is a subquiver of K(n, n) having

a relative invariant of weight θ (i.e. K(n, n) has a perfect matching all of whose arrows

belong to Q). The lattice polytope∇(Q, θ) can be identified with a subset of∇(K(n, n), θ):

think of m ∈ ZQ1 as m̃ ∈ ZK(n,n)1 where m̃(a) = 0 for a ∈ K(n, n)1 \Q1 and m̃(a) = m(a)

for a ∈ Q1 ⊆ K(n, n)1. The surjection ϕ̃ : C[tm | m ∈ ∇(K(n, n), θ)] → A(K(n, n), θ)

restricts to ϕ : C[tm | m ∈ ∇(Q, θ)]→ A(Q, θ). Denote by π the surjection of polynomial

rings that sends to zero the variables tm with m /∈ ∇(Q, θ). Then π maps the ideal ker(ϕ̃)

onto ker(ϕ), consequently generators of ker(ϕ̃) are mapped onto generators of ker(ϕ). Since

we know already that the first ideal is generated by elements of degree at most 3, the same

holds for ker(ϕ). The case when Q is an arbitrary bipartite quiver with n sources and

n sinks having possibly multiple arrows, and θ(v) = −1 for each source v and θ(w) = 1

for each sink w follows from the above case by a repeated application of Proposition 4.11

below.

Assume next that
∑

v∈Q0
(|θ(v)|−1) ≥ 1, so there exists a vertex w ∈ Q0 with |θ(w)| > 1.

By symmetry we may assume that w is a sink, so θ(w) > 1. Construct a new quiver Q′ as

follows: add a new vertex w′ to Q0, for each arrow b with b+ = w add an extra arrow b′ with
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(b′)+ = w′ and (b′)− = b−, and consider the weight θ′ with θ′(w′) = 1, θ′(w) = θ(w) − 1,

and θ′(v) = θ(v) for all other vertices v. By Corollary 4.3 and (4.3) it is sufficient to show

that if

m1 + · · ·+mk = n1 + · · ·+ nk = s ∈ S := S(Q, θ)

for some k ≥ 4 and m1, . . . ,mk, n1, . . . , nk ∈ ∇(Q, θ) ∩ ZQ1 , then mi ∼s nj for some i, j.

Set S ′ := S(Q′, θ′), and consider the semigroup homomorphism π : S ′ → S given by

π(m′)(a) =

m′(a) +m′(a′) if a+ = w;

m′(a) if a+ 6= w.

Take an arrow α with α+ = w and s(α) > 0. After a possible renumbering we may assume

that m1(α) > 0 and n1(α) > 0. Define m′1 ∈ NQ′1
0 as m′1(α) = m1(α)− 1, m′1(α′) = 1, and

m′1(a) = m1(a) for all other arrows a ∈ Q′1. Similarly define n′1 ∈ NQ′1
0 as n′1(α) = n1(α)−1,

n′1(α′) = 1, and n′1(a) = n1(a) for all other arrows a ∈ Q′1. Clearly π(m′1) = m1, π(n′1) = n1.

Now we construct s′ ∈ S ′ with π(s′) = s, s′ −m′1 ∈ NQ′1
0 and s′ − n′1 ∈ NQ′1

0 (thus m′1 and

n′1 divide s′ in S ′). Note that
∑

a+=w s(a) = kθ(w) and
∑

a+=w max{m1(a), n1(a)} <∑
a+=w(m1(a) + n1(a)) = 2θ(w) (since m1(α) > 0 and n1(α) > 0). The inequalities

θ(w) ≥ 2 and k ≥ 4 imply that
∑

a+=w(s(a)−max{m1(a), n1(a)}) ≥ k. Consequently there

exist non-negative integers {t(a) | a+ = w} such that
∑

a+=w t(a) = (
∑

a+=w s(a)) − k,

s(a) ≥ t(a) ≥ max{m1(a), n1(a)} for all a 6= α with a+ = w, and s(α) − 1 ≥ t(α) ≥
max{m1(α), n1(α)}−1. Consider s′ ∈ ZQ′1 given by s′(a′) = s(a)−t(a) and s′(a) = t(a) for

a ∈ Q1 with a+ = w and s′(b) = s(b) for all other b ∈ Q′1. By construction s′ has the desired

properties, and so there exist m′i, n
′
j ∈ ∇(Q′, θ′) with s′ = m′1 + · · · + m′k = n′1 + · · · + n′k.

Since
∑

v∈Q′0
(|θ′(v)|−1) is one less than

∑
v∈Q0

(|θ(v)|−1), by the induction hypothesis we

have m′1 ∼s′ n′1. It is clear that a ∼t b implies π(a) ∼π(t) π(b), so we deduce m1 ∼s n1. As

we pointed out before, this shows by Corollary 4.3 that ker(ϕ) is generated by elements of

degree at most 3. �

The above proof refered to a general recipe to derive a minimal generating system of

I(Q, θ) from a minimal generating system for the quiver obtained by collapsing multiple

arrows to a single arrow. Let us consider the following situation: let Q be a quiver with

no oriented cycles, α1, α2 ∈ Q1 with α−1 = α−2 and α+
1 = α+

2 . Denote by Q′ the quiver

obtained from Q by collapsing the αi to a single arrow α. Take a weight θ ∈ ZQ0 = ZQ′0 .
The map π : ∇(Q, θ) → ∇(Q′, θ) mapping m 7→ m′ with m′(α) = m(α1) + m(α2) and

m′(β) = m(β) for all β ∈ Q′1 \ {α} = Q1 \ {α1, α2} induces a surjection from the monoid
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S := S(Q, θ) onto the monoid S ′ := S(Q′, θ′). This extends to a surjection of semigroup

algebras π : C[S] → C[S ′], which are identified with A(Q, θ) and A(Q′, θ), respectively.

Keep the notation π for the induced C-algebra surjection A(Q, θ) → A(Q′, θ). We have

the commutative diagram of C-algebra surjections

F = C[tm | m ∈ ∇(Q, θ) ∩ ZQ1 ]
ϕ−→ A(Q, θ)

↓ π ↓ π
F ′ = C[tm′ | m′ ∈ ∇(Q′, θ) ∩ ZQ′1 ] ϕ′−→ A(Q′, θ)

where the left vertical map (denoted also by π) sends the variable tm to tπ(m). For any

monomial u ∈ F ′ and any s ∈ S with π(xs) = ϕ′(u) ∈ S ′ we choose a monomial ψs(u) ∈ F
such that π(ψs(u)) = u and ϕ(ψs(u)) = xs. This is clearly possible: let u = tm1 . . . tmr , then

we take for ψs(u) an element tn1 . . . tnr where π(nj) = mj, such that (n1 + · · ·+ nr)(α1) =

s(α1). Denote by εi ∈ NQ1

0 the characteristic function of αi ∈ Q1 (i = 1, 2).

Proposition 4.11 Let uλ − vλ (λ ∈ Λ) be a set of binomial relations generating the ideal

ker(ϕ′). Then ker(ϕ) is generated by G1

⋃
G2, where

G1 := {ψs(uλ)− ψs(vλ) | λ ∈ Λ, π(xs) = ϕ′(uλ)}

G2 := {tmtn − tm+ε2−ε1tn+ε1−ε2 | m,n ∈ ∇(Q, θ) ∩ ZQ1 ,m(α1) > 0, n(α2) > 0}.

Proof. Clearly G1 and G2 are contained in ker(ϕ). Denote by I the ideal generated by them

in F , so I ⊆ ker(ϕ). In order to show the reverse inclusion, take any binomial relation

u − v ∈ ker(ϕ), then ϕ(u) = ϕ(v) = xs for some s ∈ S. It follows that π(u) − π(v) ∈
ker(ϕ′), whence there exist monomials wi such that π(u)− π(v) =

∑k
i=1 wi(ui− vi), where

ui − vi ∈ {uλ − vλ, vλ − uλ | λ ∈ Λ}, w1u1 = π(u), wivi = wi+1ui+1 for i = 1, . . . , k − 1

and wkvk = π(v). Moreover, for each i choose a divisor ri | s such that π(xri) = ϕ′(ui)

(this is clearly possible). Then I contains the element
∑k

i=1 ψs−ri(wi)(ψri(ui) − ψri(vi)),
whose ith summand we shall denote by yi−zi for notational simplicity. Then we have that

π(y1) = π(u), π(zk) = π(v), π(zi) = π(yi+1) for i = 1, . . . , k − 1, and xs = ϕ(yi) = ϕ(zi).

It follows by Lemma 4.12 below u − y1, v − zk, and yi+1 − zi for i = 1, . . . , k − 1 are all

contained in the ideal J generated by G2. Whence u− v is contained in I. �

Lemma 4.12 Suppose that for monomials u, v ∈ F we have ϕ(u) = ϕ(v) ∈ A(Q, θ) and

π(u) = π(v) ∈ F ′. Then u−v is contained in the ideal J generated by G2 (with the notation

of Proposition 4.11).
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Proof. If u and v have a common variable t, then u − v = t(u′ − v′), and u′, v′ satisfy

the conditions of the lemma. By induction on the degree we may assume that u′ − v′

belongs to the ideal J . Take m1 ∈ ∇(Q, θ) ∩ ZQ1 such that tm1 is a variable occurring in

u. There exists an m2 ∈ ∇(Q, θ)∩ZQ1 such that tm2 occurs in v, and π(m1) = π(m2). By

symmetry we may assume that m1(α1) ≥ m2(α1), and apply induction on the non-negative

difference m1(α1)−m2(α1). If m1(α1)−m2(α1) = 0, then m1 = m2 and we are done by the

above considerations. Suppose next that m1(α1)−m2(α1) > 0. By π(m1) = π(m2) we have

m2(α2) > 0, and the condition ϕ(u) = ϕ(v) implies that there exists an m3 ∈ ∇(Q, θ)∩ZQ1

such that tm2tm3 divides v, and m3(α1) > 0. Set m′2 := m2 + ε1 − ε2, m′3 := m3 − ε1 + ε2.

Clearly m′2,m
′
3 ∈ ∇(Q, θ) ∩ ZQ1 and tm2tm3 − tm′2tm′3 ∈ J . So modulo J we may replace v

by tm′2tm′3v
′ where v = tm2tm3v

′. Clearly 0 ≤ m1(α1)−m′2(α1) < m1(α1)−m2(α1), and by

induction we are finished. �

We conclude this section by a graph theoretical reformulation of Proposition 4.8 and

Corollary 4.3. For an undirected graph G, we define its matching graph Match(G) to be

the graph whose vertex set is labelled by the perfect matchings of G and two vertices are

connected by an edge in Match(G) if the corresponding matchings are edge disjoint in G.

Proposition 4.13 If G is bipartite and k-regular for k ≥ 4 then Match(G) is connected.

Proof. Let Q be the quiver we obtain by orienting each edge of G from one side of its

bipartition to the other and θ be the weight that is −1 on each source of Q and 1 on each

sink. Now let s denote the lattice point in ZQ1 that takes value 1 on each arrow. Since G

is k-regular we have s ∈ k∇(Q, θ) and the statement follows immediately from Proposition

4.8 and Corollary 4.3. �

A well-studied special case of matching graphs are the graphs Match(K(n, n)), which

are usually referred to as derangement graphs in the literature. They can be equivalently

defined as having vertices labelled by the elements of the symmetric group Sn, and edges

running between σ1 and σ2 whenever σ1σ
−1
2 has no fixed point. These graphs are known

to be connected for n ≥ 4 (see for example [39]).

4.3.1 The general case in [46]

In this section we give a short derivation of the main result of [46] from the special case

Proposition 4.8. To reformulate the result in our context consider a bipartite quiver Q
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with at least as many sinks as sources. By a one-sided matching of Q we mean an arrow

set which has exactly one arrow incident to each source, and at most one arrow incident to

each sink. By abuse of language the characteristic vector in ZQ1 of a one-sided matching

will also be called a one-sided matching. The convex hull of the one-sided matchings in ZQ1

is a lattice polytope in RQ1 which we will denote by OSM(Q). Clearly the lattice points of

OSM(Q) are precisely the one-sided matchings. The normality of OSM(Q) is explained

in section 4.2 of [46] or it can be directly shown using the König-Hall Theorem for regular

graphs and an argument similar to that in the proof below. Denote by S(OSM(Q)) the

submonoid of NQ1

0 generated by OSM(Q)∩ZQ1 . This is graded, the generators have degree

1. Consider the ideal of relations among the generators {xm | m ∈ OSM(Q)∩ZQ1} of the

semigroup algebra C[S(OSM(Q))]. Theorem 2.1 from [46] can be stated as follows:

Theorem 4.14 The ideal of relations of C[S(OSM(Q))] is generated by binomials of de-

gree at most 3.

Proof. Consider a quiver Q′ that we obtain by adding enough new sources to Q so that

it has the same number of sources and sinks, and adding an arrow from each new source

to every sink. Let θ be the weight of Q′ that is −1 on each source and 1 on each sink.

Now the natural projection π : RQ′1 → RQ1 induces a surjective map from ∇(Q′, θ) ∩ ZQ′1
onto OSM(Q) ∩ ZQ1 giving us a degree preserving surjection between the corresponding

semigroup algebras. By Corollary 4.3 it is sufficient to prove that for any k ≥ 4, any

degree k element s ∈ S(OSM(Q)), and any m,n ∈ OSM(Q) ∩ ZQ1 with m,n dividing s

we have m ∼s n. In order to show this we shall construct an s′ ∈ ∇(Q′, kθ) ∩ ZQ′1 and

m′, n′ ∈ ∇(Q′, θ) ∩ ZQ′1 such that m′ ≤ s′, n′ ≤ s′, π(m′) = m, π(n′) = n and π(s′) = s.

By Proposition 4.8 we have m′ ∼s′ n′, hence the surjection π yields m ∼s n. The desired

s′, m′, n′ can be obtained as follows: think of s as the multiset of arrows from Q, where

the multiplicity of an arrow a is s(a). Pairing off the new sources Q′0 \Q0 with the sinks in

Q not covered by m and adding the corresponding arrows to m we get a perfect matching

m′ of Q′ with π(m′) = m. Next do the same for n, with the extra condition that if none

of n and m covers a sink in Q, then in n′ it is connected with the same new source as in

m′. Let t ∈ NQ′1
0 be the multiset of arrows obtained from s by adding once each of the

arrows Q′1 \ Q1 occuring in m′ or n′. For a vertex v ∈ Q′1 set degt(v) :=
∑

v∈{c−,c+} t(c).

Observe that s −m and s − n belong to S(OSM(Q))k−1, hence degs−m(w) ≤ k − 1 and

degs−n(w) ≤ k − 1 for any vertex w. If w is a sink not covered by m or n, then degs(w)

agrees with degs−m(w) or degs−n(w), thus degs(w) ≤ k − 1, and hence degt(w) ≤ k. For
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the remaining sinks we have degt(w) = degs(w) ≤ k as well, moreover, degt(v) = k for the

sources v ∈ Q0 \ Q′0, whereas degt(v) ≤ 2 for the new sources v ∈ Q′0 \ Q0. Consequently

successively adding further new arrows from Q′1\Q1 to t we obtain s′ ≥ t with degs′(v) = k

for all v ∈ Q′0. Moreover, m′ ≤ t ≤ s′, n′ ≤ t ≤ s′, and π(s′) = s, so we are done. �

4.4 Quiver cells

The aim of this section is to compile a full list of quiver polytopes whose toric ideals are

not generated in degree 2 up to dimension 4. For an undirected graph G we will denote

by G∗ the quiver we obtain from G by putting a valency 2 sink on each edge. Recall from

Theorem 3.22 that any d-dimensional prime quiver polytope can be realized as ∇(G∗, θ)

for a 3-regular graph G. The following proposition shows, that to obtain a full list of quiver

polytopes in a given dimension such that their toric ideals are not generated in degree 2,

one only has to consider prime quivers and products of lower dimensional examples. The

statement is likely well-known but we provide a short proof for the sake of completeness.

Proposition 4.15 Let ∇1 ⊂ Rd1 and ∇2 ⊂ Rd2 be normal lattice polytopes and ∇ =

∇1 × ∇2 ⊂ Rd1+d2. Denote the corresponding toric ideals by I(∇), I(∇1) and I(∇2).

Then I(∇) is generated in degree 2 if and only if both I(∇1) and I(∇2) are generated in

degree 2.

Proof. Recall that S(∇) denotes the graded semigroup corresponding to ∇. By replacing

a polytope ∇ ⊂ Rd with the integral-affinely equivalent polytope ∇ × {1} ⊂ Rd+1 it can

be always assumed that k∇ ∩ l∇ = ∅ for positive integers k 6= l, hence it makes sense to

identify the elements of k∇ with the degree k part of S(∇).

First assume that I(∇) is generated in degree 2 and pick any s1 ∈ k∇1 ∩ Zd1 for

k ≥ 3. We need to show that ∼s1 has only one equivalence class. Indeed choose any

m1,m2 ∈ ∇1 ∩ Zd1 such that m1,m2 |S(∇1) s1, moreover choose a s2 ∈ k∇2 ∩ Zd2 and

n ∈ ∇2 ∩ Zd2 such that n |S(∇2) s2. By the assumption we have (m1, n) ∼(s1,s2) (m2, n),

hence there is a sequence as in the definition of ∼s starting from (m1, n) and ending in

(m2, n). Projecting this sequence to the coordinates that correspond to ∇1 we obtain that

m1 ∼s1 m2.

For the other direction let (s1, s2) ∈ k∇∩Zd1+d2 for k ≥ 3 and (m1, n1), (m2, n2) ∈ ∇∩
Zd1+d2 such that (m1, n1), (m2, n2) |S(∇) (s1, s2). By the assumption that I(∇1) is generated

in degree 2 there is a sequence w1, . . . , wj ∈ ∇1∩Zd1 such that w1 = m1, wj = m2 and wi+
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wi+1 |S(∇1) s1 for all i = 1, . . . , j− 1. Note that we can always assume j ≥ 3. By normality

of ∇2 we have s2 = n1 + u1 + . . . uk−1 for some u1, . . . , uk−1 ∈ ∇2 ∩Zd2 . Since k, j ≥ 3 it is

possible to choose a sequence p2, . . . , pj−1 such that pi ∈ {n1, u1, . . . , uk−1}, pi 6= pi+1 and

n1 /∈ {p2, pj−1}. Now the sequence (m1, n1), (w2, p2), . . . , (wj−1, pj−1), (m2, n1) satisfies the

conditions in the definition of∼(s1,s2) hence we obtained (m1, n1) ∼(s1,s2) (m2, n1). Applying

the same argument for n1 instead of m1 we have (m1, n1) ∼(s1,s2) (m2, n2) completing the

proof. �

The following proposition shows that for our purpose it is enough to deal with the cases

when G is a simple graph (i.e. it contains no multiple edges).

Lemma 4.16 Let G be a graph, containing two edges - e1 and e2 - running between the

same vertices and denote by v1, v2 the valency 2 sinks of G∗ that are placed on e1 and e2

respectively. Let H be the graph we obtain from G by collapsing e1 and e2 into a single

edge e and denote by w the valency 2 sink of H∗ that is placed on e. Let θ be a weight

on G∗, such that ∇(Q, θ) is non-empty, and θ′ the weight on H∗ we obtain by setting

θ′(w) = θ(v1) + θ(v2) and θ′ = θ on the rest of the vertices. We have that I(G∗, θ) is

generated by its elements of degree 2 if and only I(H∗, θ′) is generated by its elements of

degree 2.

Proof. Let us denote the arrows of G∗ and H∗ incident to v1, v2 and w as in the picture

below.

v1 v2

a1 a2

b1 b2

G∗ H∗

v

a

b

Let us identify the arrows in G∗1 \ {a1, a2, b1, b2} with the arrows of H∗1 \ {a, b} and define

the linear map ϕ : RG∗1 → RH∗1 , as ϕ(x)(a) = x(a1) + x(a2), ϕ(x)(b) = x(b1) + x(b2)

and ϕ(x)(c) = x(c) for c ∈ G∗1 \ {a1, a2, b1, b2}. The morphism ϕ maps k∇(G∗, θ) onto

k∇(H∗, θ) for any positive integer k. Moreover for m ∈ ∇(G∗, θ) and s ∈ k∇(G∗, θ) the

inequality m ≤ s implies ϕ(m) ≤ ϕ(s) and it can be easily checked that ϕ maps the set

{m ∈ ∇(G∗, θ) | m ≤ s} onto {m ∈ ∇(H∗, θ) | m ≤ ϕ(s)}. It follows that sequences that

appear in the definition of ∼s map onto sequences that appear in the definition of ∼ϕ(s),
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hence ∼ϕ(s) has at most as many equivalence classes as ∼s. It follows by Corollary 4.3 that

if I(G∗, θ) is generated by elements of degree 2 then so is I(H∗, θ).

For the other direction first record that for any x ∈ ∇(G∗, θ) we have that x(b1) =

θ(v1)−x(a1), x(b2) = θ(v1)−x(a2), moreover x(a1), x(b1) ≤ θ(v1) and x(a2), x(b2) ≤ θ(v2).

Similarly for x ∈ ∇(H∗, θ) we have that x(b) = θ′(v)− x(a) and x(a), x(b) ≤ θ′(v). Hence

for any lattice point m ∈ ∇(H∗, θ) ∩ ZH∗1 and α1, α2 ∈ N satisfying α1 ≤ θ(v1), α2 ≤ θ(v2)

and α1+α2 = m(a), there is a unique lattice point n ∈ ∇(G∗, θ)∩ZG∗1 such that n(a1) = α1,

n(a2) = α2 and ϕ(n) = m. We will denote this preimage of m by m(α1, α2). Now assume

that I(H∗, θ′) is generated in degree 2 and let s be a lattice point in 3∇(G∗, θ). By

Corollary 4.3 we need to show that ∼s has precisely one equivalence class.

First we claim that if for some m ∈ ∇(H∗, θ) and α1, α2, β1, β2 ∈ N we have that

m(α1, α2),m(β1, β2) ≤ s then m(α1, α2) ∼s m(β1, β2). We may assume that α1 < β1 and

α2 > β2. By applying induction it is enough to deal with the case when β1 = α1 + 1 and

β2 = α2 − 1. By normality of ∇(G∗, θ) we can write

s = m(α1, α2) +m′(α′1, α
′
2) +m′′(α′′1, α

′′
2)

for some m′,m′′ ∈ ∇(H∗, θ) ∩ ZH∗1 and α′1, α
′
2, α

′′
1, α

′′
2 ∈ N. Since m(α1 + 1, α2 − 1) ≤ s one

of α′1 and α′′1 need to be positive. Without loss of generality we may assume that α′1 > 0.

If α′2 < θ(v2) then we have

m(α1, α2) +m(α′1, α
′
2) = m(α1 + 1, α2 − 1) +m(α′1 − 1, α′2 + 1),

hence m(α1, α2) ∼s m(α′′1, α
′′
2) ∼s m(α1 + 1, α2 − 1). We are done unless α′2 = θ(v2).

Now if α′′1 > 0 we can argue similarly and see that if α′′2 < θ(v2) then m(α1, α2) ∼s
m(α1 + 1, α2 − 1). However if α′2 = α′′2 = θ(v2) then s(a2) = α2 + 2θ(v2) and consequently

s(b2) = 3θ(v2) − s(a2) = θ(v2) − α2. On the other hand since m(α1 + 1, α2 − 1) ≤ s we

have that s(b2) ≥ θ(v2)− α2 + 1 a contradiction.

Hence we are only left to deal with the case when α′2 = θ(v2) and α′′1 = 0, and then we

have

s(a1) = α1 + α′1 ≤ α1 + θ(v1)

and

s(a2) = α2 + θ(v2) + α′′2 ≥ θ(v2) + 1.

Summarizing we obtained that either m(α1, α2) ∼s m(α1 + 1, α2− 1) or s(a1) ≤ α1 + θ(v1)
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and s(a2) ≥ θ(v2) + α2. Now repeating the entire argument for m(α1 + 1, α2 − 1) instead

of m(α1, α2) we obtain that either m(α1, α2) ∼s m(α1 + 1, α2− 1) or s(a1) ≥ θ(v1) +α1 + 1

and s(a2) ≤ α2 − 1 + θ(v2). Now it is clear that both pairs of inequalities can not hold at

the same time hence we have m(α1, α2) ∼s m(α1 + 1, α2 − 1) proving the claim.

Now let m(α1, α2) and m′(α′1, α
′
2) be two arbitrary lattice points in ∇(G∗, θ) ∩ {x ∈

ZG∗ | x ≤ s}. Since I(H∗, θ′) is generated by its elements of degree 2 we have m ∼ϕ(s)

m′, whence there is a series of lattice points m1, . . .mk ∈ ∇(H∗, θ′) satisfying m1 = m,

m2 = m′ and mi + mi+1 ≤ ϕ(s). It is not difficult to see that integers γi1, γ
′i
1 , γ

2
i , γ

′2
i for

i = 1, . . . , k can be chosen, such that the expressions mi(γ
i
1, γ

i
2),mi(γ

′i
1 , γ

′i
2 ) make sense and

satisfy mi(γ
′i
1 , γ

′i
2 ) + mi+1(γi+1

1 , γi+1
2 ) ≤ s and hence mi(γ

′i
1 , γ

′i
2 ) ∼s mi+1(γi+1

1 , γi+1
2 ) for all

i ∈ {1, . . . , k − 1}. Comparing this with the claim proven with the previous paragraph we

obtain m(α1, α2) ∼s m′(α′1, α′2), completing the proof of the Lemma. �

Note that while we showed in Section 3.1 that it is possible to list every toric quiver

variety in a given dimension, we estimate these lists in dimension 4 and higher to be

extremely long. More importantly to each toric quiver variety there are an infinite number

of quiver polyhedra associated, hence there did not seem to be any obvious way to achieve

our goal via direct computation. Instead we follow an approach similar to that of [22],

where it was shown that the amongst the 3×3 transportation polytopes, only the Birkhoff

polytope B3 (cf. the end of Section 2.4 for its definition) yields relations that are not

generated in degree 2. This is a special case of our result, since 3 × 3 transportation

polytopes are quiver polytopes of the bipartite quiver K3,3. The key tool in their proof

was to use a hyperplane subdivision to decompose the polytopes into ”cells”, which are

subpolytopes of facet width 1, and then carry out a case by case analysis of the - finitely

many - cells that occur.

For a lattice polytope ∇ ⊂ Rd and an integer vector k ∈ Zd we define the k-cell of ∇
to be

∇k = {x ∈ ∇ | k(i) ≤ x(i) ≤ k(i) + 1 ∀(i : 1 ≤ i ≤ d)}.

By the 0-cell of ∇ we just mean the k-cell for k = (0, . . . , 0). For a quiver polytope

∇(Q, θ) and a non-negative integer vector k ∈ NQ1 we will denote by θk the weight defined

by

θk(v) =
∑
a+=v

k(a)−
∑
a−=v

k(a),

i.e. θk is the unique weight θ′ such that k ∈ ∇(Q, θ′).
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We will call the non-empty cells that can be obtained from quiver polytopes quiver

cells. Since quiver polytopes always lie in the positive quadrant it suffices to consider cells

defined by k ∈ NQ1 . As we will show in the next proposition, one only has to consider a

finite set of weights to obtain a complete list of quiver cells (up to translation) associated

to a fixed quiver.

Proposition 4.17 Let Q be a quiver and k ∈ NQ1.

(i) For any integer weight θ we have that ∇(Q, θ)k = ∇(Q, θ − θk)0 + k.

(ii) There are only finitely many different weights θ, such that ∇(Q, θ)0 is non-empty.

Proof. (i) follows immediately from the definition of quiver polytopes. For (ii) consider

that the lattice points of ∇(Q, θ)0 take values {0, 1} on each edge, for the polytope to be

non-empty, θ needs to satisfy

−|{a ∈ Q1 | a− = v}| ≤ θ(v) ≤ |{a ∈ Q1 | a+ = v}|,

for each vertex v ∈ Q0. �

It follows from Proposition 2.21 that quiver cells are also quiver polytopes, in particular

they are normal and their toric ideals are generated in degree at most 3.

By an alternating cycle of the quiver Q we mean a lattice point c ∈MQ = F−1(0)∩ZQ1 ,

such that c(a) ∈ {0, 1,−1} for all a ∈ Q1 and supp(c) is a primitive (undirected) cycle.

Recall from Proposition 2.12 that the alternating cycles generate MQ. Moreover a simple

inductive argument shows that any lattice point m ∈ MQ can be (greedily) decomposed

as a sum of alternating cycles c1, . . . , cl, such that the coordinates of the ci are either zero

or have the same sign as m. (Alternatively one can derive this statement from Theorem

21.2 from [42] along with the discussion that follows it and the fact that vertex-arrow

incidence matrices of quivers are totally unimodular.) The following proposition shows us

why cells play an important role in studying the generators of toric ideals. We note that an

alternative proof could be derived from Theorem 6.2 in [9], which in turn is proven using

several facts about the defining ideals of so-called monoidal complexes, but we preferred

to show that there is a direct combinatorial argument.

Proposition 4.18 For a quiver polytope ∇(Q, θ), and a relation b = tm1tm2tm3−tn1tn2tn3 ∈
I(Q, θ) let k ∈ NQ1 be such that (m1 + m2 + m3)/3 ∈ ∇(Q, θ)k. Then there exist
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m′1,m
′
2,m

′
3, n

′
1, n

′
2, n

′
3 ∈ ∇(Q, θ)k such that b′ = tm

′
1tm

′
2tm

′
3 − tn

′
1tn
′
2tn
′
3 ∈ I(Q, θ) and b

is contained in an ideal generated by b′ and some degree 2 elements of I(Q, θ).

Proof. We need to show that we can transform m1,m2,m3 into m′1,m
′
2,m

′
3 as in the

theorem by successively replacing pairs of lattice points with new lattice points that have

the same sum. For an integer n and an arrow a ∈ Q1 denote by da(n) the distance of n

from the set {k(a), k(a) + 1} and set

D(mi) =
∑
a∈Q1

da(mi(a)).

If D(m1) +D(m2) +D(m3) = 0 we are done since D(mi) = 0 if and only if mi ∈ ∇(Q, θ)k.

Otherwise we will show that we can replace two of m1,m2,m3 with new lattice points from

∇(Q, θ) having the same sum, such that the value of D(m1) + D(m2) + D(m3) strictly

decreases, and - since the D(mi) are all integers - in finitely many steps the sum will be 0.

If D(m1) +D(m2) +D(m3) 6= 0 one of the mj does not lie in the cell ∇(Q, θ)k, so we can

assume that say m1(a) < k(a) for some a ∈ Q1. Since k(a) ≤ (m1(a)+m2(a)+m3(a))/3 it

follows that one of m2(a) and m3(1) has to be at least k + 1. Assume that m2(a) ≥ k + 1.

Now since m2−m1 ∈MQ it decomposes as a sum of alternating cycles c1 + · · ·+ cl. Since

m2(a) > m1(a) we have that cj(a) = 1 for some j. Since c1, . . . , cl can be chosen such

that their coordinates are either zero or have the same sign as m2 −m1, the lattice points

m1 + cj,m2 − cj have non-negative entries, hence m1 + cj,m2 − cj ∈ ∇(Q, θ). We claim

that for any b ∈ Q1 we have that

db(m1(b)) + db(m2(b)) ≥ db(m1(b) + cj(b)) + db(m2(b)− cj(b))

with strict inequality when b = a. If cj(b) = 0 then the claim is trivial. If cj(b) 6= 0 then

m1(b) 6= m2(b) and cj(b) = sgn(m2(b)−m1(b)). It follows that

|db(m1(b) + cj(b))− db(m1(b))| ≤ 1

and whenever

db(m1(b) + cj(b)) = db(m1(b)) + 1

we also have

db(m2(b) + cj(b)) = db(m2(b))− 1
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(and similarly in the other direction), proving the inequality in the claim. Moreover in the

case b = a, we have that cj(a) = 1 and

da(m1(a)) > da(m1(a) + 1),

since m1(a) < k(a), and

da(m2(a)) ≥ da(m2(a)− 1),

since m2(a) ≥ k(a). It follows that

D(m1) +D(m2) +D(m3) > D(m1 + cj) +D(m2 − cj) +D(m3)

and induction completes the proof. �

Note that our argument differs from Section 2 of [22] in that they used the fact that in the

case of the 3× 3 transportation polytopes the cells that do not yield cubic relations, also

possess a quadratic Gröbner basis (in fact they were simplices).

Corollary 4.19 If s ∈ 3∇(Q, θ)k is such that ∼s as a relation of the semigroup S(∇(Q, θ))

has more than one equivalence class, then ∼s as a relation of the semigroup S(∇(Q, θ)k)

also has more than one equivalence class. In particular if I(∇(Q, θ)) is not generated in

degree 2, then for some k the toric ideal I(∇(Q, θ)k) is not generated in degree 2 either.

Note that the relation ∼s as a relation of the semigroup S(∇(Q, θ)k) is not the same as

the relation we get by considering as a relation of the semigroup S(∇(Q, θ)) and restricting

it to the cell ∇(Q, θ)k. Instead it is the relation we obtain by only considering sequences

of vertices that are all in ∇(Q, θ)k in the definition of ∼s.

Proposition 4.17 provides us with a way to calculate a complete list of quiver cells that

can be obtained from a fixed quiver. One needs to check for a finite set of weights whether

the polytope ∇(Q, θ)0 is non-empty. In fact the number of weights to be considered can be

further reduced if we are only interested in full-dimensional cells. We implemented this idea

as an algorithm in SAGE to calculate cells of the quivers G∗ where G is a 3-regular simple

graph on 2d− 2 vertices for d = 3, 4. The list of weights to be considered can be obtained

from the bounds in Proposition 4.17. To calculate the lattice points of any particular cell

one just needs to find the 0-1 solutions of a set of inequalities similarly to Example 3.39.

After obtaining the weights we used the ”Toric Varieties” module of SAGE, written by A.

Novoseltsev and V. Braun, and the ”Lattice and reflexive poltyopes” module, written by
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A. Novoseltsev, to calculate the dimension of our polytopes and to decide whether they

are smooth. Finally we used the ”Toric Ideals” module, written by V. Braun, to find

generators for the toric ideal of each polytope (note that by Theorem 4.24 one only has to

check the singular cases). In the case d = 3, there is only one 3-regular simple graph on

4 vertices, the complete graph K4. For d = 4 there are two 3-regular simple graphs on 6

vertices, the complete bipartite graph K3,3 and the prism graph Y3, shown in the picture

below:

The following proposition collects the results we obtained from our SAGE calculations.

Proposition 4.20 (i) The toric ideal of any cell ∇(K∗4 , θ)0 is generated by its elements of

degree 2.

(ii) The toric ideal of any cell ∇(Y ∗3 , θ)0 is generated by its elements of degree 2. The

only cell ∇(K∗3,3, θ)0 with toric ideal not generated in degree 2 is the Birkhoff polytope B3.

∇(K∗3,3, θ)0 is integral-affinely equivalent to B3 precisely when θ is −1 on the vertices that

belong to one of the classes in the bipartition of K3,3, −2 on the vertices that belong to the

other and 1 on the valency 2 sinks.

We are ready to prove the main result of this section.

Theorem 4.21 Let Q be a quiver without oriented cycles.

(i) If dim(∇(Q, θ)) ≤ 3 then I(Q, θ) is generated in degree 2.

(ii) If dim(∇(Q, θ)) = 4 then either I(Q, θ) is generated in degree 2, or ∇(Q, θ) is

integral-affinely equivalent to the Birkhoff polytope B3.

Proof. The one dimensional case is trivial - in fact the only one dimensional projective

toric variety is P1. In dimension 2 we can obtain the result without directly calculating

the cells in the following way: It follows from Proposition 3.24 that every projective toric

quiver variety is smooth, so in particular every cell is smooth. Hence by Theorem 4.24 the

toric ideal of any cell is generated by its elements of degree 2 and then by Proposition 4.18

we see that the toric ideal of any 2-dimensional projective toric quiver variety is generated

by its elements of degree 2.
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For the higher dimensional cases recall from Theorem 3.22 that we only need to consider

quiver polytopes ∇(G∗, θ) for a 3-regular graph G on 2d − 2 vertices. In dimension 3 if

G has multiple edges, then we can apply Lemma 4.16 and the fact that in the lower

dimensional cases every toric ideal is generated in degree 2 to obtain the result. Note that

the dimension of G∗ will be strictly less than 3 after collapsing edges as in Lemma 4.16.

If G has no multiple edges then it has to be K4 and we are done by applying Propositions

4.20 and 4.18.

In dimension 4 the cases when G has multiple edges or is isomorphic to Y3 can be dealt

with similarly. The argument for the case when G is K3,3 goes similarly to the one in

Section 2 of [22]. If for some θ we have that I(K∗3,3, θ) is not generated by its elements

of degree 2 then, denoting by ω the weight defined in (ii) of Proposition 4.20 we have

that ∇(K∗3,3, θ)k = k + ∇(K∗3,3, ω)0 and that there is an s ∈ 3∇(K∗3,3, θ)k, such that ∼s -

considered as a relation on the vertices of ∇(K∗3,3, θ) - has more than one equivalence class.

Let us denote by ai,j for i, j ∈ 1, 2, 3 the arrows of K∗3,3 that are incident to the vertices

on which ω takes values −1. The six vertices of ∇(K∗3,3, ω)0 ' B3 can be indexed by the

elements of the symmetric group S3 with σpqr denoting the vertex defined by σpqr(a1,p) =

σpqr(a2,q) = σpqr(a3,r) = 1 and σpqr(ai,j) = 0 for (i, j) /∈ {(1, p), (2, q), (3, r)}. With this

notation the unique element of 3∇(K∗3,3, ω)0 that corresponds to a relation that is not

generated by elements of degree 2 is s = σ123 + σ312 + σ231 = σ132 + σ312 + σ213. Set

s′ = s + k. It remains to find the weights θ for which ∼s′ has more than one equivalence

class as a relation on the vertices of ∇(K∗3,3, θ). It is easy to check that if k(ai,j) = 0 for all

i, j ∈ {1, 2, 3} then ∇(K∗3,3, θ) = ∇(K∗3,3, θ)k and hence it is intergral-affinely equivalent to

the Birkhoff polytope B3, which indeed has the above cubic relation that is not generated

in lower degree. Otherwise without loss of generality we may assume that k(a1,1) > 0. In

this case however we have that σ123 + k + σ132 + k ≤ s′, hence σ123 + k ∼s′ σ132 + k and

hence by Corollary 4.19 we see that ∼′s has only one equivalence class. �

4.5 Ideals of binary polytopes of toric GIT quotients

Our primary motivation for the results in this section was to study the toric ideals of quiver

polytopes in the special case when the coordinates of the lattice points in the polytope

take values 1 or 0. Up to integral-affine equivalence these are exactly the quiver cells which

we studied in Section 4.4. However it turned out to be convenient to generalize our results

for a wider class of polytopes, which all arise from toric GIT constructions.
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Let A ∈ Zn×d denote an integer matrix and consider the action of (C∗)n on Cd defined

as

(t1, . . . , tn) · (x1, . . . , xd) := (x1

n∏
i=1

t
Ai,1

i , . . . , xd

n∏
i=1

t
Ai,d

i ).

To a weight vector θ ∈ Zn we assign a character of (C∗)n given by (t1, . . . , tn)→
∏n

i=1(ti)
θi .

We define

∇(A, θ) := {x ∈ Rd | x ≥ 0, Ax = θ}. (4.8)

Our previous notation ∇(Q, θ) can be considered a special case of the above if we identify

Q with its signed vertex-arrow incidence matrix. Now, similarily to the case of toric quiver

varieties, when ∇(A, θ) is a normal lattice polyhedron one can verify without difficulty

that the toric variety X∇(A,θ) is isomorphic to the GIT quotient Cd //θ (C∗)n.

We note that in general ∇(A, θ) need not be a lattice polyhedron, however the variety

Cd //θ (C∗)n is always toric and can be embedded by a suitably large integer multiple of

∇(A, θ) (see Chapter 14 of [12] for details). A well-known sufficient condition for ∇(A, θ)

to be a normal lattice polyhedron is that A is totally unimodular, i.e. all of its square

submatrices have determinants −1, 1 or 0 (see Theorems 19.2 and 19.4 in [42]).

We will call lattice polytopes that arise as ∇(A, θ) as in (4.8) standard polytopes. Note

that ∇(A, θ) is a polytope if and only if it is non-empty and ∇(A, 0) = {0}.
We will call a lattice polytope whose lattice points are all 0-1 vectors (i.e. vectors

with all entries in the set {0, 1}) a binary polytope. The primary goal of this section is

to show that toric ideals of standard normal binary polytopes are generated by elements

of degree 2, under some assumptions on the arrangement of singular points. Note that if

∇ is a binary polytope then every lattice point in ∇ is a vertex. For a point x ∈ Rd we

will denote by supp(x) the set {i | x(i) 6= 0}. We say that two vertices of a polytope are

neighbours if they lie on the same edge with no intermediate lattice point, note that this

happens if and only if there is a hyperplane that intersects ∇ ∩ Zd in precisely those two

points. To prove our main results we will need two lemmas that hold for any standard

binary polytope (normality is not required).

Lemma 4.22 Let ∇ be a standard binary polytope. The vertices v1, v2 ∈ ∇ ∩ Zd are

neighbouring if and only if there are no other vertices whose support is a subset of supp(v1)∪
supp(v2).

Proof. If v1 and v2 are the only vertices whose support is a subset of supp(v1)∪supp(v2) then

for the hyperplane H = {x |
∑

i/∈supp(v1)∪supp(v2) x(i) = 0} we have (∇∩Zd)∩H = {v1, v2}.
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For the other direction let w1 be a vertex with supp(w1) ⊆ supp(v1) ∪ supp(v2). Then we

have that w2 := v1 + v2−w1 ∈ ∇∩Zd since w1 ≤ v1 + v2 and v1 + v2−w1 clearly satisfies

the linear equations defining ∇. Note that w2 6= w1 since no vertex can lie on the line

segment connecting v1 and v2. Now we have that v1 + v2 = w1 +w2, showing that the line

segment connecting v1 and v2 is not an edge of ∇, thus v1 and v2 are not neighbouring. �

Lemma 4.23 Let ∇ be a standard binary polytope. Let s be an element of S(∇) and

v1, v2 ≤ s two vertices of ∇. Then there is a series of vertices w1, . . . , wk ∈ ∇, such that

w1, . . . , wk ≤ s, v1 = w1, v2 = wk and wi is a neighbour of wi+1 for all i : 1 ≤ i ≤ k − 1.

Proof. First note that ∇′ := {x ∈ ∇ | x ≤ s} = {x ∈ ∇ | supp(x) ⊆ supp(s)} is a

polytope, since it is the intersection of a polytope and a linear subspace. We show that

the set of vertices of ∇′ is a subset of the set of vertices of ∇ (hence ∇′ itself is a standard

binary polytope). Assume that w is a vertex of ∇′. If w is not a vertex of ∇ then it

can be written as a convex combination with non-zero coefficients of some vertices of ∇:

u1 . . . ul, l ≥ 2. However this would imply that supp(ui) ⊆ supp(w) for all 1 ≤ i ≤ l, and

consequently ui ∈ ∇′, so w itself can not be a vertex of ∇′. Now the lemma is proven by

picking a series of neighbouring vertices in ∇′ that connect v1 to v2. �

Recall from Section 2.1, that we call a vertex of a polytope smooth when the affine

open set Uv is smooth (or equivalently an affine space), and we call it singular otherwise.

Now we can state the main results of this section:

Theorem 4.24 Let ∇ be a normal standard binary polytope. If ∇ contains no neigh-

bouring singular vertices then the toric ideal of ∇ is generated by its elements of degree

2.

Proof. By Corollary 4.3 we have to show that for any k ≥ 3 and s ∈ k∇∩ Zd the relation

∼s has precisely one equivalence class. Let us first treat the case when v1, w1 ≤ s are

neighbouring vertices of ∇. By the assumption at least one of them - say v1 - is a smooth

vertex. By normality of∇ there are - not necessarily distinct - vertices v2, . . . , vk, w2, . . . , wk

such that s =
∑k

i=1 vi =
∑k

i=1wi. By the assumption that v1 and w1 are neighbours one

of the ray generators of Cone(∇ − v1) is w1 − v1. Let u1 − w1, . . . , udim(∇)−1 − v1 denote

the rest of the ray generators, that together with w1 − v1 form a Z-basis of the lattice

Zd∩Span(Cone(∇−v1)). Consider the ”localized” equation
∑k

i=2(vi−v1) =
∑k

i=1(wi−v1).

Each vi−v1 and wi−w1 decomposes uniquely as a linear combination of the ray generators
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of Cone(∇− v1) with non-negative integer coefficients, so for the two sides to be equal the

decomposition of one of the vi − v1 has to contain w1 − v1 with a positive coefficient.

It follows that for some i we have an equation vi + jv1 = w1 +
∑j

l=1 ukj , implying that

vi + jv1 ≥ w1. On the other hand since all of the lattice points of ∇ are 0-1 vectors it

follows that vi + v1 ≥ w1, and consequently that for any j /∈ {1, i} we have vj + w1 ≤ s

and hence vj ∼s w1. Since vj ∼s v1 for all j, we also have v1 ∼s w1. We have established

that for any s of degree at least 3 if v ≤ s and w ≤ s are neighbouring vertices then we

have v ∼s w. Now we are done by Lemma 4.23. �

Example 4.25 It can also be deduced from the proof of Theorem 4.24 that for a standard

binary polytope ∇ whenever s ∈ k∇ for k ≥ 3 is such that there is a smooth vertex v ∈ ∇
satisfying v ≤ s, the relation ∼s has only one equivalence class. However as shown by

the following example, for any n ∈ N there is a standard binary polytope with at least n

smooth vertices, such that its toric ideal is not generated in degree 2.

Consider the complete bipartite quiver K(3, 3) and let us write v1,2,3 for its sinks, u1,2,3

for its sources and ai,j for the arrow pointing from vi to uj. Let Q be a quiver we obtain from

K(3, 3) after adding a new vertex w, arrows b1,2,3 from v1,2,3 to w, and arrows c1,2,3 from

w to u1,2,3. Set θ(v1,2,3) = −1, θ(u1,2,3) = 1 and θ(w) = 0. The polytope ∇(Q, θ) is binary

since every arrow is incident to a source of weight −1 or a sink of weight 1. Denoting

by σijk the lattice points of ∇(Q, θ) that correspond to perfect matchings of K(3, 3) as

in the proof of Theorem 4.21, and setting s = σ123 + σ312 + σ231 = σ132 + σ312 + σ213,

we see that ∼s has two equivalence classes since ∇(Q, θ) ∩ {x ≤ s} contains no lattice

points other than the σijk. On the other hand consider the vertex m ∈ ∇(Q, θ) defined as

m(b1,2,3) = m(c1,2,3) = 1 and m(ai,j) = 0 for all i, j ∈ {1, 2, 3}. The quiver Qm consists

of a single vertex with loops, hence Um ∼= M(Qm, 0) is smooth, so m is a smooth vertex.

Now adding multiple copies of the arrows b1,2,3 and c1,2,3 we can obtain an arbitrarily large

amount of smooth vertices in ∇(Q, θ).

Theorem 4.26 Let ∇ be a normal standard binary polytope. If ∇ has at most one singular

vertex then the toric ideal of ∇ has a quadratic Gröbner basis.

Proof. Let us denote by v1, . . . , vk the vertices of ∇, let R = C[tv1 , . . . , tvk ] and ϕ denote the

surjection R � C[S(∇)] defined by ϕ(tvi) = xvi . Let ≤ denote the lexicographical order

on the vertices of ∇, i.e. vi > vk if and only if for the smallest j such that vi(j) 6= vk(j)

we have vi(j) > vk(j). If ∇ contains a singular vertex v, after a possible renumbering of

the coordinates we can can assume that supp(v) = {1, . . . , b} for some integer b. Since in
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a standard binary polytope the supports of distinct vertices can not contain each other,

this assumption implies that v is maximal with respect to ≤. Now we define the monomial

ordering � on R, such that for two monomials m1 =
∏

i(t
vi)li and m2 =

∏
i(t

vi)ji we have

m2 � m1 if and only if either deg(m1) > deg(m2) or deg(m1) = deg(m2) and for the

smallest vi (with respect to the ordering ≤) such that li 6= ji we have ji > li.

We claim that the degree 2 elements of the ideal of relations ker(ϕ) are a Gröbner basis

under the ordering �. We call a monomial initial if it is the initial monomial with respect

to � of some element of ker(ϕ). The remaining monomials are called standard. Record

that a monomial m is standard if and only if it is minimal with respect to � amongst the

monomials n with ϕ(m) = ϕ(n). To prove the claim it is sufficient to show that if m is an

initial monomial with deg(m) ≥ 2, then m is divisible by an initial monomial of degree 2.

We will prove this by induction on the degree. The case deg(m) = 2 is trivial.

Now assume that m =
∏j

i=1 t
wi is an initial monomial, where the wi are not necessarily

distinct vertices of ∇ satisfying tw1 � tw2 � · · · � twj and j ≥ 3. Note that wj is a smooth

vertex, since if it was the unique singular vertex then - since we set it to be maximal with

respect to the ordering ≤ - we would have w1 = · · · = wj and since supp(wj) does not

contain the support of any other vertex m = (twj)j would be the unique monomial that

maps to ϕ(m) contradicting that it is initial. If twj is minimal with respect to � in the

set {tvi : xvi |ϕ(m)} then
∏j−1

i=1 t
wi can not be standard, otherwise – by the definition of

� and the characterization of standard monomials mentioned above – m would also be

standard. Thus
∏j−1

i=1 t
wi is an initial monomial, hence is divisible by a degree 2 initial

monomial by the induction hypothesis, implying in turn that m is divisible by a degree 2

initial monomial. It remains to deal with the case when there is a vertex v′ ∈ ∇ such that

tv
′ ≺ twj and xv

′ |ϕ(m). Let c be the smallest integer such that wj(c) > v′(c). Denoting

the neighbouring vertices of wj by u1, . . . , ud, by smoothness of wj we have that v′ − wj
can be uniquely written as

∑d
i=1 αi(ui − wj) where the coefficients αi are non-negative

integers. Since all the vertices are 0-1 vectors it follows that whenever αi 6= 0 we have

that supp(ui) ⊆ supp(wj) ∪ supp(v′). Moreover since wj(c) = 1 and v′(c) = 0 there is an

l such that αl 6= 0 and ul(c) = 0. Since for b < c we have that ul(b) = wj(b) = v′(b),

it follows that tul ≺ twj , and by supp(ui) ⊆ supp(wj) ∪ supp(v′) we have that xul |ϕ(m).

Note that ul and wj are neighbouring vertices. Applying the argument from the proof of

Proposition 4.24 for the pair (wj, ul) instead of (v1, w1) we conclude that for some r < j

we have xul |ϕ(twj twr). Now tul ≺ twj � twr , implying that the degree 2 monomial twj twr is

not standard. We are done as twj twr |m. �
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A finitely generated graded k-algebra A is called a Koszul algebra if the ground field k

has a linear graded free resolution over A. By a result of Priddy from [38], the existence of

a quadratic Gröbner basis of the ideal of relations is a satisfactory condition for the Koszul

property of the algebra, so we also have the following corollary:

Corollary 4.27 Let ∇ be a normal standard binary polytope. If ∇ has at most one singular

vertex then C[S(∇)] is Koszul.

Example 4.28 Consider the following quiver Q:

a1 b1

c1 d1

ak bk

ck dk

Setting the weight θ to be −1 on each source and 1 on each sink, the vertices of ∇(Q, θ)

correspond to the perfect matchings of the underlying undirected graph of Q. We can

obtain 2k perfect matchings by matching the vertices ai and bi with ci and di, let us denote

the corresponding vertices in ∇(Q, θ) by vi1,...,ik where ij = 1 if aj is matched with cj and

ij = 2 if aj is matched with dj. Aside of these there is only one more perfect matching

where all of the ai are matched with di and bi is matched with ci+1 for i < k and bk is

matched with c1, let us denote the vertex corresponding to this matching by w. ∇(Q, θ)

is a k + 1 dimensional binary polytope and applying Proposition 3.26 it is easy to verify

that w is the only singular vertex. Therefore by Theorem 4.26 it admits a quadratic

Gröbner basis and in particular its ideal of relations is generated by degree 2 elements.

Indeed one can check that all relations are generated by the
(
k
2

)
binomials of the type

tv1,1,i3,...,ik tv2,2,i3,...,ik − tv1,2,i3,...,ik tv2,1,i3,...,ik .

In the light of Proposition 4.8 it is natural to ask if there is a general degree bound for

the toric ideals of normal standard binary lattice polytopes. The answer to this question

is negative, we conclude this section by giving an example for each positive integer n of

a normal standard lattice polytope, such that the corresponding ideal of relations is not

generated by its elements of degree less than n.

Fix n ≥ 2 and let K(n, n) denote the complete bipartite graph on 2n vertices. Write

the bipartition of K(n, n) as K(n, n)0 = V
∐
W , where |V | = |W | = n and every v ∈ V

and w ∈ W is connected by an edge. Index the coordinates of Rn2
by K(n, n)1. Let Π
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denote the set of the n! perfect matchings of K(n, n). Consider the polytope defined as

Pn := {x ∈ Rn2 | x ≥ 0 ∀P ∈ Π :
∑
e∈P

x(e) = 1}

For each v ∈ K(n, n)0 define the lattice point mv:

mv(e) =

1 if e is incident to v

0 otherwise

Lemma 4.29 For any integer k ≥ 1 and point x ∈ kPn there is a v ∈ K(n, n)0 such that

supp(mv) ⊆ supp(x).

Proof. First note that for any x ∈ kPn and cycle of K(n, n) with edges c1, . . . c2i, in-

dexed consecutively along the cycle, we have that x(c1) + x(c3) + . . . x(c2i−1) = x(c2) +

x(c4) + . . . x(c2i). Otherwise consider a perfect matching P1 of K(n, n) containing the

edges c1, c3, . . . c2i−1 and set P2 be the perfect matching we obtain from P1 by replacing cj

by cj+1 for each j < 2i. For P1 and P2 we have
∑

e∈P1
x(e) 6=

∑
e∈P2

x(e) contradicting

x ∈ kPn. Now suppose that the conclusion of the lemma does not hold for some x and

set F := K(n, n)1 \ supp(x). Note that every vertex is incident to at least one edge in F .

Pick an edge e ∈ supp(x) with endpoints v ∈ V and w ∈ W . Choose edges fv, fw ∈ F

that are incident to v and w respectively and denote by e′ the edge that connects the other

endpoints of fv and fw. Now the edges e, fv, e
′, fw form a cycle of length 4 such that the

second and the fourth edge are not in supp(x) but the first edge is in supp(x), contradicting

the observation made at the beginning of the proof. �

Proposition 4.30 (i) Pn is a normal standard binary polytope with vertex set {mv |
v ∈ K(n, n)0}.

(ii) The toric ideal of Pn is not generated by its elements of degree at most n− 1.

Proof. Suppose x is a vertex of Pn. By Lemma 4.29 we have a vertex v with supp(mv) ⊆
supp(x). Set λ := min{x(e) | e ∈ supp(mv)}. If x 6= mv then 0 < λ < 1, and we have that

(1− λ)−1(x− λmv) ∈ ∇. Since x is then an interior point of the line segment between mv

and (1− λ)−1(x− λmv) it can not be a vertex. This shows us that Pn is indeed a lattice

polytope with vertex set {mv | v ∈ V (K(n, n))} and it follows from the definition that Pn
is standard and binary. For showing normality take a lattice point m ∈ kPn for k ≥ 2.
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By Lemma 4.29 we have a vertex v with supp(mv) ⊆ supp(m). Since m is a lattice point

we have that m(e) ≥ 1 for all e ∈ supp(mv), so m −mv ∈ (k − 1)Pn and we are done by

induction, completing the proof of (i).

For (ii) set the notation V = {v1, . . . , vn} and W = {w1, . . . , wn} for the vertices in

the two sides of the bipartition of K(n, n). We have the equality s = mv1 + · · · + mvn =

mw1 + · · · + mwn ∈ nPn. Clearly for any i, j ∈ {1, . . . , n} we have mvi + mwj
6≤ s, hence

∼s has two equivalence classes: mv1 , . . . ,mvn and mw1 , . . . ,mwn . Now we are done by

Corollary 4.3. �
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Appendix A

List of 3-dimensional reflexive quiver

polytopes

The following tables contain data of the prime 3-dimensional reflexive quiver polytopes,

which we obtained from the computations explained in Section 3.4.

QI

a b c d

Val. 2 sinks #Lattice Points #Facets #Vertices #Smooth Vertices
none 35 4 4 4
a 31 5 6 6
a,b 27 6 7 6
a,b,c 23 7 7 4
a,b,c,d 19 8 6 0
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QII

d

a

eb c

Val. 2 sinks #Lattice Points #Facets #Vertices #Smooth Vertices
none 30 5 6 6
a 26 6 8 8
b 28 6 8 8
c 25 6 8 8
a,b 24 7 9 8
a,c 23 7 10 10
a,d 22 7 9 8
b,e 26 7 10 10
a,b,c 21 8 11 10
a,b,d 20 8 9 6
a,b,e 22 8 10 8
a,c,d 21 8 12 12
a,b,c,d 19 9 12 10
a,b,d,e 18 9 9 4
a,b,c,d,e 17 10 12 8

QIII

d

a

eb c

Val. 2 sinks #Lattice Points #Facets #Vertices #Smooth Vertices
none 30 5 5 4
a 26 6 7 6
c 29 6 8 8
a,b 23 7 8 6
a,c 25 7 10 10
a,b,c 22 8 11 10
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QIV

d

e
a

f

b

c

Val. 2 sinks #Lattice Points #Facets #Vertices #Smooth Vertices
none 26 6 7 6
a 24 7 9 8
b 22 7 8 6
d 25 7 9 8
e 22 7 9 8
a,b 21 8 10 8
a, c 22 8 10 8
a,d 20 8 10 8
a,e 23 8 11 10
b, d 19 8 8 4
e,f 21 8 10 8
a,b,c 19 9 11 8
a,b,e 20 9 12 10
a,c,e 21 9 12 10
a,c,f 18 9 10 6
a,d,e 19 9 12 10
a,d,f 18 9 11 8
a,b,c,d 17 10 11 6
a,b,c,e 18 10 13 10
a,b,d,e 17 10 12 8
a,b,c,d,e 16 11 13 8
a,b,c,d,e,f 15 12 14 8
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